共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
行星齿轮箱振动信号具有复杂多分量和调幅-调频的特点。幅值解调和频率解调方法能够避免传统Fourier频谱中的复杂边带分析,有效识别故障特征频率。经验小波变换通过对信号Fourier频谱的分割构造一组正交滤波器组,能提取具有紧支撑Fourier频谱的单分量成分,再对单分量成分运用Hilbert变换即可实现信号的解调分析。经验小波变换能够有效分离出调幅-调频成分,不存在模态混叠现象,具有完备的理论基础,自适应性好、算法简单、计算速度快。将改进的经验小波变换应用于行星齿轮箱振动信号的解调分析;提出了一种单分量个数的估算方法,解决了经验小波变换中的Fourier频谱划分问题;给出了对故障敏感的信号分量的选取方法,提高了分析的针对性。将改进方法应用于行星齿轮箱振动仿真信号和实验信号分析,验证了该方法的有效性。 相似文献
3.
4.
针对齿轮箱轴承早期故障特征信号微弱且受环境噪声影响严重,故障特征信息难以识别的问题,提出了双树复小波变换(dual-tree complex wavelet transform,DT-CWT)和最小熵反褶积(minimum entropy deconvolution,MED)的故障诊断方法。首先对采集到的振动信号进行双树复小波分解,得到几个不同频段的分量,由于噪声的干扰,从各个分量的频谱中很难对故障做出正确的判断。然后对包含故障特征的分量进行最小熵反褶积滤波处理以消除噪声影响,凸显故障特征信息。最后对滤波后的信号进行Hilbert包络谱分析,即可从中准确地识别出轴承的故障特征频率。通过齿轮箱轴承故障模拟实验和工程应用实例分析验证了该方法的有效性与优越性。 相似文献
5.
《机械强度》2016,(5):927-932
炼胶机齿轮箱发生早期故障时,其振动信号一般很微弱,且隐含的冲击成分常被淹没在强烈的噪声中,导致齿轮故障诊断异常艰难。论文介绍了M步时延相关峭度的概念,并引出了最大相关峭度解卷积方法。该方法通过计算故障信号的最大相关峭度值来估算出感兴趣的解卷积故障周期T,然后选择合适的时延步数M对故障信号做最大相关峭度解卷积,最后对最大相关峭度解卷积滤波后的信号进行包络解调以提取出其故障特征,并诊断出了该齿轮箱轴V上的齿轮8(Z_8=28)的微弱裂纹故障。最后还将最大相关峭度解卷积方法与谱峭度方法进行了对比分析。应用实例结果与对比分析验证了最大相关峭度解卷积方法应用于齿轮箱早期故障诊断的有效性。 相似文献
6.
7.
针对双树复小波变换存在频率混叠以及参数需自定义的缺陷,提出自适应改进双树复小波变换的齿轮箱故障诊断方法。首先,利用双树复小波变换将信号进行分解和单支重构,采用粒子群算法将分解后分量峭度值作为适应度函数,选择双树复小波的最优分解层数;其次,对重构出的低频信号进行频谱分析提取故障特征,将单支重构后的各高频分量进行变分模态分解,通过峭度值获得各高频分量经变分模态分解后的主频率分量信号;最后,分析各主频率分量信号的频谱,识别齿轮箱的故障特征。结果表明,该方法与双树复小波变换和变分模态分解相比,不仅消除了频率混叠现象,提高了信噪比和频带选择的正确性,而且还提高了从强噪声环境中提取瞬态冲击特征的能力。 相似文献
8.
9.
10.
滚动轴承故障诊断的改进小波变换谱峭度法 总被引:1,自引:0,他引:1
在Morlet小波变换谱峭度法的基础上做了相应改进,利用小波变换谱峭度法得到的谱峭度值,自动构造最优匹配滤波器。将此方法应用于滚动轴承故障诊断中,并与原小波谱峭度法进行比较。结果表明,基于小波变换的谱峭度法的效果对滤波器的选取比较敏感,具有更加优良的监测和诊断效果。 相似文献
11.
改进的经验小波变换方法(improved empirical wavelet transform,简称IEWT)是一种新的自适应性信号处理方法,将这种方法和快速谱峭度(fast spectral kurtosis,简称FSK)相结合,进行齿轮与滚动轴承的故障诊断。首先,采用IEWT对信号进行分解,筛选出故障特征最为明显的2个分量并重构信号;其次,对重构信号进行快速谱峭度滤波;最后,对滤波后的信号进行包络谱分析,提取出信号的故障特征。分析齿轮断齿及滚动轴承故障信号,与直接包络谱和基于EMD经验模态分解(empirical mode decomposition,简称EMD)方法的FSK滤波包络谱分析方法相比可知,采用IEWT处理后再进行FSK滤波的信号进行包络谱分析更具有区分性,可有效识别齿轮和滚动轴承的故障特征。 相似文献
12.
提出了一种以经验小波变换(empirical wavelet transform,简称EWT)和多尺度熵相结合的高压断路器振动信号的特征向量提取和故障诊断的分析方法。首先,将高压断路器的振动信号进行经验小波变换,得到内禀模态函数(intrinsic mode function,简称IMF),选择相关系数较大的IMF进行重构;其次,提取重构信号的多尺度熵作为表征断路器状态的特征向量,采用归一化的方法对特征向量进行预处理并以此作为支持向量机(support vector machine,简称SVM)的输入向量进行分类训练;最后,将测试样本信号故障特征输入训练好的SVM,在SVM核函数参数进行网格算法优化的基础上进行状态识别及分类。实验结果表明,该方法可快速准确地检测高压断路器故障,实现了断路器故障的状态识别。 相似文献
13.
针对经验小波变换(empirical wavelet transform,简称EWT)在强背景噪声下对轴承的轻微故障特征提取不足的问题,提出了概率主成分分析(probabilistic principal component analysis,简称PPCA)结合EWT的滚动轴承轻微故障诊断方法。首先,对信号做PPCA预处理,提取信号主要故障特征成分,去除强背景噪声干扰;然后,采用EWT方法分解轴承故障信号,按相关系数-峭度准则选出故障特征较为明显的分量,并将所选分量重构故障信号;最后,对信号采取包络分析,提取出轴承故障特征。仿真和实验结果表明,该方法能够有效地诊断出轴承故障且效果优于对信号进行EWT包络分析。 相似文献
14.
基于多尺度Hermitian小波包络谱的轴承故障诊断 总被引:1,自引:0,他引:1
提出了一种基于多尺度Hermitian小波包络谱的轴承故障诊断方法。该方法综合利用了Hermitian小波和包络谱分析技术的优点,首先对轴承故障振动信号进行Hermitian连续小波变换,得到小波分解的实部和虚部,然后计算振动信号的多尺度包络谱。对齿轮箱轴承故障振动信号的分析表明,该方法在强噪声环境下能有效识别轴承内圈故障和外圈故障。 相似文献
15.
提出了基于经验模态分解(EMD)的齿轮箱故障诊断HHT方法,介绍了Hilbert-Huang变换理论及其算法.此后以1台现场轧机故障减速机为对象,对采集的故障信号进行EMD分解,得到固有模态函数(IMF)分量,然后对所有固有模态函数进行Hilbert变换处理,所得三维图和边际谱图较为清晰地表达了故障信息,说明了该方法在工程应用中的适用性. 相似文献
16.
17.
基于改进经验小波变换的机车轴承故障诊断 总被引:1,自引:0,他引:1
机车轴承在噪声较大的背景下工作,发生故障时,难以有效地提取其故障特征,针对这一问题,提出了经验小波变换(EWT)方法。为克服经验小波变换方法中噪声分量干扰子频带划分的问题,提出一种采用信号时频峭度谱局部极小值划分频带的方法,基于子频带构造正交小波滤波器组对信号进行EWT分解。仿真实验和工程应用表明,改进后的EWT能够较好地克服噪声分量对子频带划分的干扰,有效地分离出机车轴承损伤故障的特征。 相似文献
18.
针对经验小波变换(Empirical wavelet transform,EWT)对强噪声环境中滚动轴承微弱故障诊断的不足,主要是傅里叶频谱分段不当的问题。提出一种基于最大相关峭度解卷积(Maximum correlated kurtosis deconvolution,MCKD)降噪与改进EWT相结合的滚动轴承早期故障识别方法。首先采用最大相关峭度解卷积算法以包络谱的相关峭度最大化为目标对原信号进行降噪处理、检测信号中的周期性冲击成分,然后根据信号Fourier频谱的包络极大值进行分段,通过分析各频段平方包络谱中明显的频率成分来诊断故障。新方法能有效降噪、增强信号中周期性冲击特征、降低单次偶然冲击的影响、抑制非冲击成分。通过对含外圈、内圈故障的滚动轴承进行试验分析,结果表明,相比于快速谱峭度图和小波包络分析方法,该方法提取出的特征更加明显,能有效实现滚动轴承早期微弱故障的识别。 相似文献