首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文提出一种加氢枪用滑环式组合密封圈,工作压力达70MPa,由PEEK材料的滑环和氟橡胶的O形圈组成.模拟分析了密封圈的静密封机理及介质压力的影响.测试了密封圈的静密封和动密封性能.结果 表明:滑环与活塞杆的接触压力,及滑环与O形圈的接触压力,随介质压力呈线性变化,前者斜率大于后者.最大Von Mises应力分布在滑环...  相似文献   

2.
童华  陈明旸 《润滑与密封》2018,43(10):104-110
针对新型井下排水泵驱动气缸活塞中使用的双三角滑环式密封圈,建立其二维轴对称与三维实体有限元模型。采用二维轴对称模型分析滑环的最小厚度、圆弧半径、宽度与O形圈预压缩量等几何参数和介质压力、往复运动速度、环境温度等工作参数对其静密封和往复动密封性能的影响。采用三维实体模型分析环向接触应力分布和活塞径向偏心对密封性能的影响。结果表明:在静密封中,除滑环宽度外的几何参数会对主密封面的接触应力大小和分布产生较大影响;介质压力增加时,密封圈具有较好的自封性;环境温度的增加会降低最大接触应力与O形圈的最大Mises应力;在动密封中,最大接触应力随时间呈波动变化,介质压力、运动速度与环境温度在一定范围内会影响其密封性能;当活塞处于径向偏心运动状态时,密封性能会随着偏心量的增大而明显降低,故应采取措施尽量提高活塞在气缸中的同轴度。  相似文献   

3.
利用ANSYS建立了滑环式组合密封圈中应用最为广泛的方形同轴密封件(格来圈)的二维轴对称模型,分析了滑环厚度对接触压力的影响及液体压力对密封圈变形的影响。结果表明密封面处的接触压力随滑环厚度的减小而增加,薄滑环的跟随补偿性较厚滑环好,能够实现良好的密封,验证了滑环式组合密封圈采用“薄环”设计的正确性;所有接触面上的接触压力都随液体压力的增大而增大,密封圈变形也随之增大,薄滑环较厚滑环承受的压力大,此结果对方形同轴密封件的设计及使用提供了理论指导。  相似文献   

4.
利用ANSYS建立了滑环式组合密封圈中应用最为广泛的方形同轴密封件(格来圈)的二维轴对称模型,分析了滑环厚度对接触压力的影响及液体压力对密封圈变形的影响。结果表明密封面处的接触压力随滑环厚度的减小而增加,薄滑环的跟随补偿性较厚滑环好,能够实现良好的密封,验证了滑环式组合密封圈采用“薄环”设计的正确性;所有接触面上的接触压力都随液体压力的增大而增大,密封圈变形也随之增大,薄滑环较厚滑环承受的压力大,此结果对方形同轴密封件的设计及使用提供了理论指导。  相似文献   

5.
齿形滑环式组合密封的有限元分析   总被引:3,自引:0,他引:3  
利用ANSYS建立齿形滑环式组合密封的二维轴对称模型,分析压缩量、介质压力及齿形滑环结构对组合密封的接触应力、变形、Yon Mises应力及剪应力的影响.结果表明:随着压缩量的增加,组合密封的变形及接触应力增大,O形圈的受力减小;随着介质压力的增加,组合密封的变形、接触应力及O形圈的受力增大,因此,在较大介质压力条件下,应适当增加压缩量;适当改变齿形滑环的尺寸,可以使得O形圈受力减小,且齿形滑环不易磨损,使用寿命延长.  相似文献   

6.
建立齿形滑环密封系统的数值计算模型,采用有限元方法分析O形圈和滑环的接触压力和应力分布,并探讨初始压缩率、介质压力和滑环齿厚对齿形滑环密封圈密封性能的影响。结果表明:齿形滑环密封系统中O形圈的高应力区出现在靠近凹槽底部位置,而滑环的高应力主要集中在与轴筒和凹槽接触的2个尖角部位;增加初始压缩率可提高密封圈的密封性能,但密封圈的应力也逐渐增大;介质压力越大,密封圈的应力及密封面上的接触压力也随之增大;适当增加滑环齿厚可提高密封圈的密封性能及滑环抵御变形的能力。针对齿形滑环密封圈中滑环与凹槽接触的2个尖角处最易发生失效的问题,采用对其两尖角倒角的改进方案。结果表明:在相同工作条件下,改进后齿形滑环密封圈主密封面的最大接触压力提高,而且滑环和O形圈截面的最大Von Mises应力减小。因此,改进后的齿形滑环密封圈密封性能更好,使用寿命更长。  相似文献   

7.
介绍了斜锥滑环组合密封器的工作原理和结构设计,并利用ANSYS软件分析了斜锥滑环厚度变化对接触压力、O形圈的Von.mises应力和弹簧推力的影响.分析结果表明:斜锥滑环厚度在设计范围内变化时,密封面和接触面的最大接触压力大于或远大于密封介质工作压力,说明斜锥滑环组合密封具有良好的密封性和自补偿能力,斜锥滑环密封设计符合预期.此结果为斜锥滑环组合密封的进一步研究和使用提供了理论指导.  相似文献   

8.
利用ANSYS建立了滑环式组合密封圈中应用较广泛的阶梯形同轴密封件(斯特圈)的二维轴对称模型,分析了滑环厚度对密封圈的变形和密封面处接触应力的影响;压缩量对密封件的接触应力、变形和VonMises应力的影响;液体压力对密封圈变形、密封面处接触应力和接触宽度的影响,结果证明随滑环厚度增加,滑环抵御变形的能力增强,密封面处的接触应力增大;压缩量越大密封件VonMises应力增加,变形增大,接触应力出现突变;随液体压力增加,O形圈和滑环变形增大,密封面处接触应力和接触宽度增加。  相似文献   

9.
为准确模拟密封圈的装配安装过程的接触压力和流体压力对密封圈的作用,采用ABAQUS自动收缩配合方式仿真分析密封圈装配过程的接触静压,采用流体压力渗透载荷的加载方式模拟介质压力对密封圈的作用,研究组合密封中O形圈压缩率和工作介质压力对齿形滑环式组合密封圈密封性能的影响。研究表明:采用自动收缩配合方式能有效解决常规的位移加载方法引起的计算的接触压力不准确问题,采用流体压力渗透载荷的加载方式可自动寻找唇口接触与分离的临界点,计算高压流体加载时可得到很好的收敛解,有效解决了通过边界法加载介质压力时计算结果不准确的问题。计算结果表明:当压缩率超过一定值时,齿形滑环组合密封圈的最大Mises应力和主密封区域最大接触应力随工作介质压力的增加而增加,最大接触应力满足密封的要求;但当压缩率太低时,密封圈在高介质压力下产生较大的形变造成很大的应力集中,导致密封失效。  相似文献   

10.
建立了齿形滑环密封结构数值计算模型,采用有限元方法分析0形密封圈和滑环的接触应力和应力分布,并探讨介质压力、往复速度、摩擦系数和压缩量对密封性能的影响.结果表明,在静密封阶段,0形密封圈横截面内部应力集中在靠近凹槽底部区域,滑环足部与中间接触部位的变形严重.随着压缩量、介质压力的增加,齿形滑环密封圈密封性能和变形增加,...  相似文献   

11.
为了研究格莱圈的往复密封性能,基于ANSYS Workbench建立格莱圈的有限元模型,并对格莱圈进行往复动态分析,分析压缩率、流体压力和滑环圆角半径对格莱圈最大接触压力和最大Von Mises应力的影响。数值模拟结果表明:在同一压缩率下O形圈与滑环之间的接触压力要大于O形圈与缸体之间的接触压力;随着介质压力的增加,滑环-活塞杆接触对与其余接触对之间的接触压力差值越明显;当滑环空气侧圆角半径小于流体侧圆角半径时,内外冲程所受到的压力差要明显大于空气侧圆角半径大于流体侧圆角半径时的压力差,因此当空气侧圆角半径大于流体侧圆角半径时,可延长格莱圈的使用寿命。  相似文献   

12.
为了提高水力加压器密封性能,设计一种由滑环与O形密封圈组成的组合密封;利用流体压力渗透载荷的加载方法对密封结构进行有限元仿真,得到单因素滑环结构参数对密封性能的影响规律;利用正交试验,分析多因数滑环结构参数综合作用对活塞密封性能的影响。研究结果表明:滑环沟槽底部厚度、滑环侧边宽度、滑环高度、活塞单边径向密封间隙对动密封面接触压力影响依次减弱,新型密封结构选择滑环高度6.5 mm、滑环侧边宽度2.65 mm、滑环沟槽底部的厚度0.7 mm、单边径向间隙0.25 mm时,其最大接触应力比常规O形密封圈结构提高了245%;新型密封结构中的动密封面接触应力比常规O形密封圈结构有了显著的提高,提高了水力加压器的密封性能。  相似文献   

13.
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators,especially in high parameter hydraulic systems.Only elastic deformations of hydraulic reciprocating seals were discussed,and hydrodynamic effects were neglected in many studies.The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals,and few of these models had been simultaneously validated through experiments.By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal,a numerical fluid-solid interaction model consisting of fluid lubrication,contact mechanics,asperity contact and elastic deformation analyses is constructed with an iterative procedure.With the SRV friction and wear tester,the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal.The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition.The experimental result is used to validate the fluid-solid interaction model.Based on the model,The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction,mixed lubrication and full film lubrication conditions,including of the contact pressure,film thickness,friction coefficient,liquid film pressure and viscous shear stress in the sealing zone.The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal,and can also be widely used to study other hydraulic reciprocating seals.  相似文献   

14.
为解决给水泵油封装置中O形圈因密封失效而引起泄漏的问题,利用有限元法对密封圈的大变形、超弹性进行非线性接触分析。首先建立密封圈与转动环沟槽之间的轴对称模型,分析O形圈在不同压缩率、不同轴向压力下的应力分布规律,进而对油封装置结构改进,最后利用试验台位测试油封的密封性能。结果表明: O形密封圈压缩率越大主接触面峰值应力越大,侧接触面应力基本不变;密封圈轴向压力的增加,接触应力也急剧上升,侧面接触应变较大,但工况内无胶料“挤出”发生;改进后双密封O形圈动环结构密封可靠性、安全性更高,在不同工况下进行密封性能试验,油封装置无泄漏,为油封密封圈选型以及避免给水泵实际运行中出现“滴、漏”现象具有一定的指导意义。  相似文献   

15.
随着勘探深度的增加,地层压力升高和岩石硬度增加,螺杆钻具经常发生横向涡动、纵向跳动、扭向振动及黏滑现象,限制了冲击螺杆钻具的推广应用。为研究高温、高转速和往复运动耦合作用下传动轴总成密封特性及参数敏感性具,对比相同工况下星形圈、O形圈和组合圈密封特性,得到不同密封圈在静密封、动密封状态下接触压力分布,根据主密封面接触压力判定方法得到最佳密封圈结构。根据该结构研究沟槽敏感参数,并讨论沟槽形状、位置、数目和宽度等对组合圈密封特性的影响。结果表明:组合圈密封效果远远优于O形圈及星形圈;沟槽形状采用等腰三角形、沟槽数目为3时密封性能最优,沟槽位置于中间最合理;静、动密封状态下,主密封面接触压力随沟槽宽度增大而增大,而静密封状态下次接触面接触压力及O形圈应力几乎不变。  相似文献   

16.
O形密封圈密封性能非线性有限元数值模拟   总被引:6,自引:1,他引:5  
利用ABAQUS软件建立海底采油设备用O形密封圈轴对称模型,对其在不同压缩率、不同油压时的Von Mi-ses应力及密封面接触压力分布规律进行探讨,确定O形密封圈材料易失效位置;分析压缩率和油压对O形密封圈最大Von Mises应力、最大接触压力及最大接触压与油压压差的影响。结果表明:O形密封圈最大Von Mises应力、密封面最大接触压力随压缩率和油压的增加而增加,且O形密封圈在中低高压下的密封能力高于超高下的密封能力,为海底采油设备用O形密封圈的结构设计及选型提供相关参考。  相似文献   

17.
利用ABAQUS软件建立了高压氢气环境下橡胶O形圈静密封结构的有限元分析模型,研究了高压氢气作用下由于橡胶材料的吸氢膨胀对O形圈变形及应力的影响,探讨了不同初始压缩率、氢气压力、沟槽间隙、有无挡圈等工况下O形圈最大Von Mises应力、最大剪切应力和最大接触应力的变化规律。结果表明:高压氢气环境下,吸氢膨胀会导致橡胶O形圈的截面高度和面积的增加,但对O形圈的应力基本无影响。增加O形圈压缩率会提高初始安装工况下的接触应力,有利于初始密封的形成,但当介质压力较大时,过高的压缩率会显著增加剪切应力,导致O形圈发生剪切破坏。相较于低压工况,高压下密封沟槽间隙对O形圈的Mises应力和剪切的影响非常显著,较大的沟槽间隙会使O形圈发生挤出和剪切破坏,而安装密封挡圈可明显改善O形圈的变形和应力情况,有效防止O形圈被挤入沟槽间隙,同时提高密封性能。  相似文献   

18.
O形圈密封沟槽棱圆角有利于O形圈和挡环的安装,防止O形圈或挡环被锐边划伤而影响密封可靠性,且沟槽棱圆角半径对O形圈密封性能也有较大影响.以沟槽棱圆角半径为变量,利用有限元分析软件建立有、无挡环配合使用2种O形圈密封结构的二维轴对称模型,分析在35 MPa介质压力下静密封和动密封2种密封状态下O形圈密封性能,比较不同半径...  相似文献   

19.
水下柔性连接器可解决水下油气管道在连接时因管道角度偏离而无法成功对接的问题。水下连接器的密封结构以球面上的O形圈为主,为了验证连接器密封结构在水下的密封性能,通过对O形圈材料本构方程的计算分析,得到O形圈橡胶材料的重要材料参数;从von Mises应力、接触压力、不同接触面的接触宽度等方面,分析不同介质压力对O形圈密封性能的影响。结果表明:水下柔性连接器密封结构在不同工作状态下均能够保持良好的密封性能,且介质压力越大,O形圈与球形结构上的密封槽之间的接触应力就越大,连接器密封性能有所提升。通过压力试验验证了O形圈球形结构应用在水下是可靠的。  相似文献   

20.
综合考虑密封端面间的粗糙接触、热力变形和黏温特性,构建了密封环与辅助密封件、润滑液膜与密封介质的关联体系,建立了牙轮钻头单金属密封热流固耦合数学模型,并研究了关键钻井参数如环境压力、钻头转速对单金属密封端面膜厚分布形态、温升变化及密封性能的影响规律。研究结果表明:随钻井深度和环境压力的增大,单金属密封端面间隙逐渐由收敛型演化为发散型,膜厚及温升极值点由外径侧向内径侧迁移,其临界转折点为环境压力p0=11 MPa附近;高压工况下,密封端面内径侧接触压力递增,不利于润滑油膜的形成;密封系统的泄漏率和摩擦力随钻头转速增大均有所增大,但在低压工况下可通过合理增大钻头转速来提高钻井效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号