共查询到19条相似文献,搜索用时 85 毫秒
1.
针对实际工程中不确定性因素与产品质量特性之间不具有显式函数关系的稳健优化问题时,代理模型的精度成为关键。本文提出一种基于支持向量机代理模型和粒子群算法的稳健优化方法,采用拉丁超立方试验设计采样布点,优化问题的目标性能函数、约束函数的均值和标准差由具有自动参数优化的支持向量机模型替代,采用粒子群优化算法对稳健优化模型进行求解。以典型的两杆结构优化为例,结果表明支持向量机代理模型的综合性能比常用的响应面、BP神经网络和Kriging模型更优越,稳健优化结果比较理想,为复杂产品的不确定性设计优化提供了一种新的思路。 相似文献
2.
提出了一种基于粒子群优化算法的支持向量机参数选择方法。针对RBF-SVM,利用PSO算法中粒子速度及其位置与RBF-SVM模型中参数对C和g相对应,找到最优参数,代入支持向量机SVM预测模型中,得到基于粒子群优化算法的支持向量机(PSO-SVM)模型,利用此模型对电厂的一次风量软测量进行预测研究。实验结果表明,经过粒子群优化算法的支持向量机回归模型具有较高的预测精度,粒子群优化算法是选取支持向量机参数的有效方法。 相似文献
3.
针对支持向量机核函数和控制参数选取难度较大的问题,提出了一种主动划分参数区间的双尺度径向基核支持向量机,并用并行定向变异混合粒子群优化算法选取其控制参数。试验分析了利用标准数据集经多次独立重复试验得到的均值等统计量,验证、测试了上述支持向量机模型,同时考虑了类间数据不平衡的影响。结果表明,双尺度径向基核函数的性能在多数情况下优于单径向基核函数,并行定向变异的混合粒子群优化算法优于标准粒子群优化算法,能够有效抑制早熟收敛,有利于搜索到更优的支持向量机控制参数。 相似文献
4.
基于支持向量机和粒子群算法的产品意象造型优化设计 总被引:1,自引:0,他引:1
为满足消费者对产品造型的感性意象需求,提出了基于支持向量机和粒子群算法的产品意象造型优化设计方法。首先确定目标意象、代表性样本和造型设计参数,进行产品感性意象调查;然后应用支持向量机获得"造型设计参数-产品感性意象"之间的映射关系,建立产品造型意象评价系统;最后以代表性样本为初始种群,以意象评价为适应度评估,利用粒子群算法建立产品意象造型优化设计系统。以汽车轮廓优化设计进行实例研究,结果表明该方法较好地模拟了设计思维,可为产品概念设计提供有效的辅助与支持。 相似文献
5.
6.
改进粒子群算法优化的支持向量机在滚动轴承故障诊断中的应用 总被引:1,自引:0,他引:1
针对惩罚因子C和核参数g选择不当造成支持向量机(SVM)分类效果不理想的问题,在基本粒子群(PSO)算法基础上引入动态惯性权重、全局邻域搜索、种群收缩因子、粒子变异概率等操作,提出了一种新的改进型粒子群(IPSO)算法优化SVM参数的分类器。采用Libsvm工具箱中的公共数据集BreastTissue,Heart和Wine来测试其分类效果,结果表明IPSO-SVM分类器在预测精度和分类时间上明显优于SVM和PSO-SVM分类器。然后将其应用于滚动轴承的二分类问题和多分类问题的故障诊断中,仿真实验证明IPSOSVM分类器能显著提高全局收敛能力和收敛速度,可得到理想的分类结果。最后,用IPSO-SVM分类器对实际轴承进行故障诊断,结果验证了其拥有良好的分类稳定性,值得进一步在工程领域内推广。 相似文献
7.
缺陷的自动分类在焊接缺陷的超声无损检测与评价中具有十分重要的意义.而支持向量机是一种性能优越的机器学习方法,在小样本、非线性及高维模式分类问题中能找到全局最优解,因此,支持向量机在超声检测缺陷分类方面具有良好的应用前景.然而,在实际应用中,选择合适的支持向量机参数是很困难的,影响了分类器的性能和分类精度.针对支持向量机训练中人为选择参数的随意性,提出基于粒子群优化的支持向量机参数自动选择方法,并将其应用于焊接缺陷的分类.该方法采用分类正确率作为优化问题的适应度函数,利用粒子群算法对支持向量机参数进行优化.为验证该方法的有效性,并和常规支持向量机、遗传算法优化的支持向量机进行比较,分别采用标准数据集和焊接缺陷实验数据集进行了分类测试.实验结果表明,该方法获得了比常规支持向量机和遗传算法优化的支持向量机更高的分类正确率. 相似文献
8.
9.
针对工业热处理生产中的钎焊炉调度问题,考虑到钎焊炉的能耗和生产效率,以工件加工时间最小化为目标,建立了钎焊炉调度问题的数学模型.结合粒子群算法快速收敛和模拟退火算法能从局部极值区域跳出等的优点,设计了求解模型的模拟退火粒子群算法.数值仿真实验证明了所提模型及算法的可行性和有效性. 相似文献
10.
针对产品造型、色彩和材质等外观特征要素与用户情感需求的复杂关联性问题,提出基于支持向量机回归和模拟退火算法的产品外观意象优化设计方法。结合聚类分析、因子分析等方法确定代表性样本和感性意象词汇对,借助语义差异法制作问卷,构建产品外观意象特征评价量表;通过支持向量机回归方法构建产品外观意象评价模型;将评价模型作为模拟退火算法的目标函数,优化产品外观意象设计,并建立产品外观设计推荐系统。以汽车方向盘为例进行设计验证,证明文中方法的有效性,为产品设计提供有效的辅助和支持。 相似文献
11.
针对在小样本数据情况下训练的连铸漏钢预报模型难以获得较高预报准确率的问题,提出了一种基于主动学习遗传算法-支持向量机(GASVM)分类器的漏钢预报算法。该算法首先将采集到的连铸结晶器坯壳温度数据进行预处理,并将有效数据进行标注;然后利用标注后的小样本数据和遗传算法来优化SVM的经验参数,训练并得到支持向量机模型;最后利用某钢厂采集到的连铸结晶器坯壳温度数据进行测试。测试结果表明,在利用小样本数据进行训练的情况下,所提出的基于主动学习GASVM分类器的连铸漏钢预报算法具有较高的漏钢预报率(预报精度)和100%的漏钢报出率,验证了所提漏钢预报算法的有效性。 相似文献
12.
为提高基于最小二乘支持向量机(LSSVM)的时间序列预测方法的泛化能力与预测精度,研究了一种基于粒子群优化(PSO)的LSSVM。该方法以交叉验证误差为评价准则,利用PSO对多个具有不同超参数的LSSVM进行基于迭代进化的优化选择,并以交叉验证误差最小的LSSVM作为最终优化后的LSSVM。时间序列预测实例表明,经PSO优化后的LSSVM的预测精度高于未经优化的LSSVM与传统时间序列预测方法的预测精度。 相似文献
13.
针对SVM预测刀具磨损量存在的参数不易确定的问题,提出了新的基于粒子群优化SVM的智能预测方法。在介绍粒子群算法和SVM回归模型基本理论的基础上,提出用自适应粒子群优化算法优化SVM参数的策略,采用小波包方法对切削声信号进行分解处理,建立了基于粒子群优化SVM的刀具磨损量预测模型。试验分析的仿真结果表明,所建立的刀具磨损量智能预测模型具有较强的推广能力和较高的预测精度。 相似文献
14.
为实现液晶可变延迟器(LCVR)对入射光相位精确调制,分析了LCVR的双折射率色散特性,得到相位延迟量由驱动电压项和色散项组成的关系式;采用支持向量机SVM(support vector machines)算法,并用粒子群算法PSO(particle swarm optimization)对支持向量机的参数(c和g)进行优化,构建粒子群-支持向量机的LCVR相位延迟特性中驱动电压项的预测模型,并将其预测模型用于以568 nm激光作为光源的验证实验中;结果表明,在568 nm激光照射下,LCVR延迟量的实验值与标定理论值偏差不大于0.005 4λ,因此,说明PSO-SVM方法可作为LCVR相位延迟特性标定的有效手段。 相似文献
15.
管道裂纹远场涡流检测的定量反演方法研究 总被引:1,自引:0,他引:1
裂纹缺陷定量反演是管道远场涡流检测中的一个难点问题。首先针对远场涡流检测信号的特点,提出了一种基于最小均方误差准则的波形逼近技术,用以高精度提取检测信号的波形特征。接着通过建立非线性多项式反演模型、基于一维搜索寻优的BP神经网络反演模型和基于粒子群搜索寻优的支持向量机反演模型来实现由检测信号波形特征到裂纹缺陷尺寸的定量反演。仿真结果表明,支持向量机反演模型计算相对误差低于5%,具有较强的抗干扰能力,适合作为裂纹缺陷定量反演的有力工具。最后,通过实验也验证了这一结果。 相似文献
16.
17.
针对支持向量机(SVM)的参数优化问题,结合人工化学反应优化算法的优点,提出了基于人工化学反应优化算法的支持向量机(ACROA_SVM)方法;然后利用标准数据验证了ACROA_SVM方法的有效性和优越性;最后,结合局部均值分解信号分析和能量矩特征提取,将ACROA_SVM方法应用于旋转机械故障诊断中。分析结果表明,ACROA_SVM方法不但具有较高的故障诊断精度和较好的泛化能力,而且时间消耗短,故障诊断效率高,有利于实现在线智能故障诊断。 相似文献
18.
基于遗传算法的支持向量机分类器模型参数优化 总被引:13,自引:0,他引:13
建立在统计学习理论和结构风险最小原则上的支持向量机在理论上保证了模型的最大泛化能力,因此与建立在经验风险最小原则上的神经网络模型相比,理论上更为完善。本文运用支持向量机建立模式识别分类器模型,研究影响模型分类能力的相关参数,在分析参数对分类器识别精度的影响基础上,提出用遗传算法建立支持向量机分类器模型的参数自适应优化算法。最后,用算例表明了本文算法的正确有效性。 相似文献
19.
为了快速合理地选择调度策略,研究了一种半导体生产线动态调度策略选择方法。该方法以历史数据为基础,选取支持向量机为数据挖掘工具,采用二进制粒子群优化算法对生产属性(特征)子集进行寻优,获得基于支持向量机的动态调度策略分类模型。对于任意给定的生产状态,通过该模型,能实时地获取当前生产状态下近似最优的调度策略。在调度策略评价中,选用了基于功效函数与熵权法的多目标评价方法,以扩展该方法的应用范围。在某实际硅片生产线上验证了所提动态调度方法的有效性。 相似文献