首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用激光熔覆技术在35CrMoV钢表面制备添加La2O3质量分数分别为0,0.7%,1.4%,2.0%的铁基合金熔覆层,研究了La2O3含量对其显微组织、物相组成、显微硬度、耐摩擦磨损性能和抗冲击磨料磨损性能的影响。结果表明:未添加La2O3的熔覆层主要物相为FeCr固溶体和少量Cr23C6,添加La2O3后熔覆层中还出现了LaNi3,当La2O3质量分数为1.4%时熔覆层与基体界面平整,冶金结合良好,组织细小且均匀;随着La2O3质量分数增加,熔覆层显微硬度先增大后减小,耐摩擦磨损性能和抗冲击磨料磨损性能先提高后降低,当La2O3质量分数为1.4%,耐磨性能最好,此时熔覆层的摩擦磨损机制由未添加La2  相似文献   

2.
通过定速摩擦试验、CHASE摩擦试验及磨损表面形貌观察等方法探讨La2O3含量对稀土La2O3改性树脂基制动材料的摩擦磨损性能、抗热衰退性能与恢复性能的影响。定速摩擦试验结果表明,制动材料中添加适量La2O3可有效提高其摩擦因数,降低其磨损率,同时还可增加其摩擦因数的稳定性;其中,添加20% La2O3试样的综合摩擦学性能为最优。CHASE摩擦试验结果表明,La2O3的加入可有效提高复合材料的抗热衰退性能与恢复性能。  相似文献   

3.
雷卫宁  朱荻 《中国机械工程》2006,17(16):1686-1689
采用纳米稀土La2O3为添加剂,研究其对电铸镍溶液特性、铸层微观结构及其性能的影响。通过对沉积过程中阴极极化曲线的测定,探讨了纳米La2O3在电极表面的作用机理,并采用SEM、XRD等现代分析手段对电铸层微观结构进行了测试和分析。试验结果表明:纳米La2O3能够在阴极表面发生特性吸附,增大阴极极化,细化精密电铸层晶粒,提高铸层的均匀性;晶粒生长在(220)晶面方向上存在明显的择优取向;获得的电铸层显微硬度比普通电铸层有显著提高。  相似文献   

4.
为了实现在无外部供能下对紫外光的有效探测,基于Ag修饰的Bi2O3纳米块(Ag/Bi2O3)纳米块制备了自供能紫外探测器。通过煅烧法制备Bi2O3纳米块,随后采用室温溶液法在其表面沉积Ag纳米粒子,进而成功制备了Ag/Bi2O3纳米块,且对所制备样品的晶体结构和微观形貌等进行了表征。结果表明,Ag/Bi2O3纳米块的平均尺寸约为1μm,且Ag纳米粒子随机分布在Bi2O3纳米块表面。将涂覆Ag/Bi2O3纳米块的FTO作为工作电极,并进一步构建了自供能紫外探测器。在365 nm的紫外光照射下,Ag/Bi2O3纳米块紫外探测器能在零偏压下实现对紫外光的快速检测,这证实其具有自供能特性。相比于Bi2O3...  相似文献   

5.
Ni-ZrO_2纳米复合电铸层耐磨性研究   总被引:1,自引:0,他引:1  
张文峰  朱荻 《机械科学与技术》2006,25(12):1467-1470
利用SEM分析了纯镍铸层,以及用直流和脉冲工艺所制备N i-ZrO2纳米复合电铸层的表面形貌,研究了直流条件下镀液中纳米颗粒悬浮量对纳米复合电铸层在干摩擦状态下耐磨性的影响,并对纳米复合电铸层磨损表面的形貌和磨损机理进行了探讨。结果表明:纳米复合电铸层的表面形貌不同于纯镍铸层;由于纳米颗粒的强化作用,使纳米复合电铸层表现出优良的耐磨性,并且磨损机理发生了变化;纳米复合电铸层的耐磨性取决于其中纳米颗粒的复合量。  相似文献   

6.
以稀土LaCl3作为添加剂,通过极化曲线、微分电容测定,探讨了稀土LaCl3对电铸镍铸液性能的影响及其在电极表面的作用机理,并采用SEM、XRD等现代分析手段对镍电铸层微观结构进行测试。试验结果表明:LaCl3能够在阴极表面发生特性吸附,增大阴极极化,细化精密电铸层晶粒,提高精密电铸的沉积速度,电铸层的显微硬度得到显著提高。  相似文献   

7.
采用超声-脉冲电铸工艺在覆铜板表面的微区域内制备了镍铸层,用扫描电镜观察镍铸层的表面形貌,并采用Image Tool软件测量了镍铸层的平均晶粒尺寸,研究了超声波功率及方向、脉冲平均电流密度、脉冲占空比等对镍铸层晶粒尺寸的影响。结果表明:其他条件相同时,双向(y向和z向)超声波制备镍铸层的晶粒尺寸小于相同功率单向(y向或z向)超声制备的;随着超声波功率、脉冲平均电流密度的增大,镍铸层的晶粒尺寸先减小后增大;当脉冲占空比由10%增大到30%时,晶粒尺寸由0.97μm增大到3.32μm。  相似文献   

8.
采用超窄脉宽脉冲电流、扫描电子显微镜和X射线衍射仪等现代分析手段和工具,以纳米稀土La2O3为电铸液添加剂,研究了脉冲电参数对电铸层微观结构及力学性能的影响。试验结果表明:由于纳米稀土La2O3的独特吸附作用,脉冲条件下获得的电铸层晶粒细小,组织均匀,其力学性能明显优于普通直流电铸层的力学性能;在ton为100μs、toff为500μs、电流密度为3A/dm^2时,铸层显微硬度和耐磨性比普通电铸层有显著提高。  相似文献   

9.
采用粉末冶金方法制备了添加不同质量分数(0~7%)钽的Ni-5Al和Ni-10Al镍基高温合金,通过1 100℃×100 h的高温氧化试验研究了钽的添加对这2种合金高温抗氧化机理的影响。结果表明:添加相同含量钽的Ni-10Al合金单位面积氧化质量增量高于Ni-5Al合金;钽的添加促进了Ni-5Al合金氧化膜中NiO的长大和NiTa2O6的生成,随着氧化过程进行,Al2O3和NiAl2O4组成的氧化层在NiO/基体界面处生成,阻碍了合金的进一步氧化;添加钽的Ni-10Al合金表面氧化膜包括外侧致密NiO氧化层以及内侧疏松的由NiO、Al2O3、NiAl2O4和NiTa2O6组成的氧化层,内氧化层中存在细小孔洞,该合金较差的高温抗氧化性与疏松的氧化膜以及氧化膜内缺陷和NiTa2O6的形成...  相似文献   

10.
以FeSO4·7H2O和CH3COONa·3H2O为原料,采用水热方法制备α-FeOOH纳米棒,将所得α-FeOOH纳米棒于250℃烧结2 h制备α-Fe2O3纳米棒,采用差热-热重分析法研究了制备的α-FeOOH和α-Fe2O3纳米棒对高氯酸铵热分解的催化性能。结果表明:在100℃水热反应6 h可制备得到平均直径为18 nm的纯相α-FeOOH纳米棒,再于250℃烧结2 h后获得平均直径为16 nm的纯六方相α-Fe2O3纳米棒;α-Fe2O3和α-FeOOH纳米棒对高氯酸铵热分解的催化效果显著,添加质量分数2%的α-Fe2O3纳米棒和α-FeOOH纳米棒可使高氯酸铵的结束分解温度分别降低40,54℃,高温分解峰值温度分别降低51.1,61.6℃;当α-Fe2...  相似文献   

11.
J. Takadoum 《Wear》1993,170(2):285-290
Friction and wear behaviour of alumina sliding on various materials (nickel, copper, titanium, aluminium, alumina) were investigated experimentally. Pin-on-disc tests were conducted in air at various relative humidity levels (RHL). The results show that the influence of humidity depends on the material of the couples. Tribological behaviour of alumina sliding on very reactive metals such as titanium and aluminium is not influenced by RHL. In contrast, the friction coefficient and wear mechanism of nickel and copper are strongly affected by adsorbed films of water vapour. Nickel implanted with boron was also studied. The friction and wear of implanted surfaces are drastically reduced due to a lowering of the nickel surface reactivity. The tribological behaviour of the Al2O3/Al2O3 couple is also sensitive to RHL. The variation of friction coefficient and wear of this system are discussed in terms of tribochemical reactions and crack propagation.  相似文献   

12.
为提高石墨/CaF2/TiC/镍基合金(GCTN)复合涂层的力学性能和摩擦学性能,运用等离子喷涂技术在45钢表面制备了Y2O3改性GCTN复合涂层,研究了Y2O3对复合涂层的微观组织、显微硬度、断裂韧性和摩擦磨损性能的影响。结果表明:Y2O3改性GCTN复合涂层主要由γ-Ni、CrB、Cr7C3、TiC、CaF2和石墨等物相组成。Y2O3在等离子火焰加热作用下与C元素反应生成活性元素Y,Y净化了复合涂层的微观组织,并细化了CrB、Cr3C7等硬质相晶粒,提高了其致密性。当Y2O3质量分数为0.5%时,复合涂层的显微硬度和断裂韧性分别为593.3MPa和6.82MPa·m1/2,比不含Y2O3的复合涂层分别增大了8%和22%,其机理主要是Y2O3细化了CrB、Cr3C7等硬质相晶粒,起到了细化强化作用。由于GCTN-0.5Y2O3复合涂层的显微硬度和断裂韧性显著提高,减少了其黏着磨损和微观断裂磨损,因而GCTN-0.5Y2O3复合涂层的摩擦因数和磨损率最小,分别为0.085和0.39×10-3mm3/m。  相似文献   

13.
The sliding wear behaviour of high-chromium white cast iron (16.8% Cr) has been examined as a function of silicon and Mischmetal alloy additions (1, 2, 3 and 5% Si and 0.1 and 0.3% Mischmetal). Such additions are known to modify the structure, but there is considerable controversy as to the exact effect. Silicon was found to refine the dendritic structure and increased the eutectic carbide volume fraction. However, for contents above 3%, transformation of the austenitic matrix to pearlite occurred in preference to martensite. Mischmetal additions reduced the austenite dendrite arm spacing, but did not have a significant effect on the carbide structure. The wear behaviour was investigated for each alloy in the as-cast (austenitic matrix) and hardened (martensitic) conditions using a block on ring configuration in pure sliding in the load range 42–238 N for a distance of 70 km against a hardened M2 steel counterface. For low loads (42 and 91 N), all the alloys showed a similar wear rate (3×10−4 to 4×10−4 mm3/m), associated with the formation of a thin (3 μm) oxide film of Fe2O3, the formation of very fine debris and a small depth of deformation below the worn surface (7 μm). For higher loads, wear was a strong function of microstructure, and was associated with a thicker film of the oxides Fe2O3 and Fe3O4 and greater depths of deformation. The iron with 2% silicon exhibited the best performance with a wear rate of 7×10−4 mm3/m and this was attributed to its finer structure and the formation of a thicker oxide film. In contrast, the iron with 5% silicon exhibited the worst performance, with a wear rate of 14×10−4 mm3/m, attributed to the pearlitic matrix. A linear relationship was observed between the depth of carbide fracture and the wear rate. The relationship between microstructure and wear mechanism is discussed.  相似文献   

14.
Andrea Birkett  John K. Lancaster 《Wear》1986,110(3-4):345-357
Plastics-based dry-bearing liners used for flight control bearings in aircraft are usually mated against counterfaces of 440C stainless steel hardened to about 700 HV and finished to Ra ≈ 0.05 μm. In this paper experiments to examine the possibility of reducing liner wear by modifications to the counterface are described. Accelerated (pin-on-disc) tests were made against 440C stainless steel of varying hardness and roughness, electroplated with copper and cadmium, ion implanted with nitrogen, copper and cadmium, vacuum deposited with TiN and TiC, diffusion treated with nitrogen, boron, sulphur, Sn-Cu and Sn-Sb and coated with ceramics-cermets (Al2O3, Cr2O3, (Cr2C3)-Ni-Cr and WC-Co). The most important counterface properties influencing liner wear are the hardness and surface roughness, and for ceramic and cermet coatings, the harder and smoother the surface, the lower is the liner wear. No evidence was found to indicate that the chemical nature of the counterface has a major affect on the liner wear.  相似文献   

15.
复合电铸Ni-La2O3纳米复合材料的组织结构和性能   总被引:6,自引:1,他引:6  
薛玉君  朱荻  靳广虎  赵飞 《中国机械工程》2004,15(17):1569-1572
采用复合电铸工艺制备了不同La2O3纳米颗粒含量的Ni—La2O3纳米复合材料,用扫描电子显微镜和X射线衍射仪观察分析了纳米复合材料的表面形貌及组织结构,与电沉积纯镍作对比研究了纳米复合材料的显微硬度和耐磨损性能。结果表明,由于La2O3纳米颗粒的存在,导致Ni-La2O3纳米复合材料的组织结构发生了改变,它比纯镍沉积层具有更高的显微硬度及耐磨性,且La2O3纳米颗粒质量分数越大,纳米复合材料的显微硬度越高,耐磨性越好。  相似文献   

16.
文中合成了金属氧化物(Mn3O4、MoO3和SnO)掺杂的Pd基催化剂,研究了其催化甲醛氧化(formaldehyde oxidation reaction,FOR)的能力。结果表明,Pd-Mn3O4展示出最高的FOR活性(3.5 mA/cm2),是纯Pd催化剂的2.6倍。以Pd-Mn3O4为工作电极敏感材料的甲醛传感器对甲醛的响应是干扰气体的20倍,显示出良好的气体选择性。Pd-Mn3O4传感器在甲醛检测方面显示出巨大应用潜力。  相似文献   

17.
J. N. Ding  Y. G. Meng  S. Z. Wen 《Wear》2001,250(1-12):311-317
In the present study, high-Tc superconducting thin YBa2Cu3O7 films and polysilicon films were prepared to investigate the initial sliding friction properties using a ball-on-flat tribometer when samples were moved against a sapphire ball or a steel ball in ambient environment. The surface topography was measured with atomic force microscope (AFM). After five times testing, the experimental results indicate that the friction coefficient of YBa2Cu3O7 films is lower than that of polysilicon films when sliding against a sapphire ball and almost the same when sliding against a steel ball. In particular, the initial friction of YBa2Cu3O7 films is more stable when sliding against a sapphire ball. However, the initial friction of polysilicon films fluctuates during a cycle period when sliding against a sapphire ball. They are both stable when sliding against a steel ball. Although, the surface profile of the YBa2Cu3O7 film is rough and can be seen to be rougher than the polysilicon film, but the friction coefficient of the YBa2Cu3O7 film is lower than that of polysilicon film. Also, although the topography of YBa2Cu3O7 films changes during friction, the friction coefficients are stable. This clearly shows that the initial sliding friction of YBa2Cu3O7 films under microfriction is stable. The observation signifies YBCO film is a good film to prevent stick–slip motion in ambient environment. The wear properties of YBa2Cu3O7 films suggest that the superconducting outgrowths (CuO) are loose and they can be easily removed.  相似文献   

18.
For the combinations of an Si3N4 pin and five kinds of ceramic disk (SiC, Si3N4, Al2O3, ZrO2, TiC), a friction and wear test was carried out in ethanol and in ethanol containing iron particles (1 wt.%, average diameter d = 200 nm, D = 12 μm under cohered condition) under a load in the range 5.88–11.50 N, at a sliding velocity of 0.138–0.196 m s−1. A topographical analysis was also performed on the microasperities of the wear surfaces to estimate the behavior of the iron particles, and the degree of surface damage. As a result, the following facts were found. (1) The addition of iron particles in ethanol decreased both the wear rates of SiC and TiC disks and the mating pins, and also decreased the wear rate of the Al2O3 disk but increased that of the mating pin. The addition increased the wear rates of both ZrO2 and Si3N4 disks and the mating pins. (2) The average coefficients of friction with the addition of iron particles were greater than those without iron particles. (3) The wear rates of pin and disk depended on the topographies of wear surfaces and the wear index Γ.  相似文献   

19.
H.R. Shetty  T.H. Kosel  N.F. Fiore 《Wear》1982,80(3):347-376
Scratch tests using alumina (Al2O3) abrasive particles and Vickers diamond pyramids were employed to study material removal mechanisms in the abrasion of cobalt-base powder metallurgy alloys 6 and 19. The alloys were specially prepared to produce either fine or coarse carbides in order to study the effects of carbide size. Scanning electron microscopy was used to analyze the scratch grooves, the scratch tools and the wear debris particles.

Comparison of scratch tests with Al2O3 and diamond pyramids shows that many features produced by the extremely hard regularly shaped diamond tools are different from those produced by irregular Al2O3 particles. Except for differences produced by tool wear, multiple-pass Al2O3 scratch tests provide excellent reproduction of the material removal processes which occur in low stress Al2O3 abrasion. Al2O3 scratches produced both chip-like and fine irregular debris particles similar to those extracted from spent abrasive used in wear testing.

Material removal in the fine carbide alloys is facilitated by the direct removal of entire carbides within the volume of micromachining chips removed from the scratch groove. In coarse carbide alloys, machining chips from large carbides are observed, but the depth of cut in the carbide phase is less than that in the f.c.c. matrix and this leads to a decrease in the volume of material removed. Direct comparison of chips removed from fine and coarse carbide alloys by the same Al2O3 particle shows larger chips from the fine carbide material.

The effects of subsurface deformation and surface irregularities on material removal were studied by carrying out scratch tests on specimens subjected to prior abrasion and by investigating multiple-pass scratches in the same scratch groove.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号