首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
《机械科学与技术》2017,(7):1035-1041
为提高柱塞泵的寿命和安全可靠性,确定柱塞泵合理的工作范围,运用FLUENT对轴向柱塞泵的运动特性进行仿真分析,研究了油液的含气量、变转速、温度与柱塞泵出口流量脉动之间的关系。仿真结果表明:油液的含气量对油液压缩性产生很大的影响,对泄漏流量影响较小;负载压力一定时,主轴转速超过2 600 r/min左右时,容积效率随着转速的增大而减小;压缩流量和泄漏随着温度的升高而增大。模型的准确性得到了实验验证,为开展柱塞泵的非线性动力学及故障演化机理等方面的研究提供了有效的工具。  相似文献   

2.
为了研究油液体积弹性模量对轴向柱塞泵动力源输入端转速波动程度的作用规律,以机电液系统多能域耦合软件AMEsim为仿真平台,建立了轴向柱塞泵的动力学仿真模型,在综合考虑油液有效体积弹性模量影响的基础上,研究了油液的含气量、温度、压力与泵端转速波动之间的关系。仿真结果表明:随着油液含气量的增大、温度的升高以及负载压力的降低,油液的体积弹性模量减小,使得泵端转速波动程度增大。为开展轴向柱塞泵的故障诊断、状态监测以及以液压系统的性能退化机理等方面的研究提供了新的研究思路。  相似文献   

3.
为分析油液的黏度对柱塞泵流动特性的影响,运用Fluent流场仿真软件对轴向柱塞泵的运动特性进行模拟。对比分析了不考虑油液黏性、考虑黏温与考虑黏压模型下柱塞泵的流动特性,仿真结果表明:油液的黏温模型对柱塞泵的流动特性影响较大,黏温模型下泵的泄漏较黏压模型增大0.7倍,黏度模型对柱塞泵的压力冲击无影响。模型的准确性得到了实验验证,为建立较为准确的柱塞泵动力学模型,以及研究其效率的影响机理提供技术支持。  相似文献   

4.
四配流窗口轴向柱塞泵可以实现单台泵同步闭式控制两台对称执行元件液压系统,也可以直接闭式控制差动缸回路。为分析其压力、流量特性,该文根据柱塞运动特征和配流面积变化原理,运用Simulation X软件对四配流窗口轴向柱塞泵进行了建模和仿真分析。通过设置斜盘角度或转速调节液压泵输出流量,考虑油液泄漏和黏性摩擦力的情况下,对加载和空载时液压泵柱塞腔和泵油口的压力、流量等特征响应曲线进行分析。仿真结果表明,流量脉动频率随泵转速增加而增大;压力脉动幅值随负载增加而增大,且压力脉动频率与负载无关。  相似文献   

5.
在考虑油液可压缩性的基础上,利用流体分析软件、采用动网格技术和空化模型,通过CFD仿真分析,改变油液的弹性模量、含气量和油液的黏度,根据配流过程中柱塞腔的压力响应特性、斜盘液压力矩、压力和流量脉动,对影响柱塞泵流量特性的油液物性参数进行详细的分析研究.  相似文献   

6.
在轴向柱塞泵中,配流盘作为最重要的元件之一,对于降低流量脉动和噪声有着至关重要的影响,该文主要针对轴向柱塞泵配流盘减震槽结构对泵内压力,流量产生的影响,对轴向柱塞泵的配流盘进行研究。通过设置不同形状配流盘减震槽的过流面积,在SolidWorks内对不同形状过流面积进行实体模型建模。该模型考虑到了油液的压缩性、柱塞副、配流副的泄露和流量倒灌对泵内流体产生的影响。通过PumpLinx对实体模型经行仿真,通过对比分析,仿真结果发现配流盘减震槽结构优化后,泵体内部的流量和压力脉动都有明显的降低,气蚀也有明显的降低。  相似文献   

7.
为研究油液的物理特性对齿轮泵脉动及噪声的影响机理,运用FLUENT对齿轮泵的二维内部流场进行模拟研究,对比分析了有无油液的压缩性、粘度对齿轮泵内部流场及泵出口脉动的影响。仿真结果表明:考虑压缩性较不考虑压缩性时,流量脉动系数增大了3.43%,压力脉动系数增大0.2%;考虑粘度变化较不考虑粘度变化时,流量脉动系数减小1.54%,压力脉动系数减小0.08%;考虑油液特征模型较不考虑时噪声增大了2.7d B。仿真与实验结果相吻合,为开展齿轮泵的非线性流体动力学及减振降噪等方面的研究提供了理论依据。  相似文献   

8.
为了研究双排式轴向柱塞泵的流量脉动特性,对双排式轴向柱塞泵柱塞的排列方式进行了分类,列写流量方程并计算不同错位角下柱塞泵的流量不均匀系数,分析柱塞排列方式和错位角的变化对双排式轴向柱塞泵流量脉动特性的影响。研究发现内外排柱塞数相同且同为奇数时,改变错位角得到的最小流量不均匀系数小于同等柱塞数的单排式轴向柱塞泵的流量不均匀系数,双排式轴向柱塞泵的流量脉动特性得到显著改善。同时还发现内外排柱塞数均为5,且错位角为π/10的双排式轴向柱塞泵具有较小的流量脉动,是一种比较理想的选择。  相似文献   

9.
介绍了虚拟样机技术在轴向柱塞泵仿真研究中的应用。借助虚拟样机技术并根据柱塞泵的物理模型参数,分别在MSC.ADAMS和AMESim环境下构建了柱塞泵的动力学模型和液压模型。利用二者模型的底层接口,搭建了液固耦合的轴向柱塞泵虚拟样机模型。基于虚拟样机,研究了油液黏度、体积弹性模量对柱塞泵出口压力脉动特性的影响,得到了泵出口压力脉动幅值及脉动率随体积弹性模量增大而增大的线性关系,也总结出了泵出口压力脉动幅值及脉功率随油液黏度增大而增大但变化幅度逐渐减小的结论。  相似文献   

10.
通过对斜盘式轴向柱塞泵泄漏途径的分析研究,得到了奇偶数泵的泄漏量计算公式,并对泵在不同参数下的泄漏量进行了仿真分析,为进一步研究泄漏量对奇偶数斜盘式轴向柱塞泵实际流量及脉动系数的影响提供了较好的理论依据。  相似文献   

11.
The flow ripple, which is the source of noise in an axial piston pump, is widely studied today with the computational fluid dynamic(CFD) technology development. In the traditional CFD modeling, the fluid compressibility, which strongly influences the accuracy of the flow ripple simulation results, is often neglected. So a compressible sub-model was added with user defined function(UDF) in the CFD model to predict the flow ripple. At the same time, a test rig of flow ripple was built to study the validity of simulation. The flow ripple of pump was tested with different working parameters, including the rotation speed and the working pressure. The comparisons with experimental results show that the validity of the CFD model with compressible hydraulic oil is acceptable in analyzing the flow ripple characteristics. In this paper, the improved CFD model increases the accuracy of flow ripple rate to about one-magnitude order. Therefore, the compressible model of hydraulic oil is necessary in the flow ripple investigation of CFD simulation. The compressibility of hydraulic oil has significant effect on flow ripple, and the compression ripple takes about 88% of the total flow ripple of pump. Leakage ripple has the lowest proportion of about 4%, and geometrical ripple leakage ripple takes the remnant 8%. Besides, the influence of working parameters was investigated through the CFD simulations and experimental measurements. Comparison results show that the amplitude of flow ripple grows with the increasing of rotation speed and working pressure, and the flow ripple rate is independent of the rotation speed. However, flow ripple rate of piston pump grows with the increasing of working pressure, because the leakage ripple will increase with the pressure growing. The investigation on flow ripple of an axial piston pump using compressible hydraulic oil provides a more validity simulation model for the CFD analyzing and is beneficial to further understanding of the flow ripple characteristics in an axial piston pump.  相似文献   

12.
水液压柱塞泵是水液压系统的关键元件,由于水介质的理化特性差异导致其泄漏、摩擦磨损、腐蚀、气蚀等现象比油压柱塞泵严重,为解决传统斜盘式水液压柱塞泵流量脉动大的问题,提出了一种新型的直线电机驱动水液压柱塞泵结构。通过研究恒流量直线电机驱动柱塞泵的可行运动规划,选取了直线电机以三角波间隔T/4相位差的运动方案,以实现双直线电机双作用水压柱塞泵实际输出较小的流量脉动。应用AMESim软件,构建了两种不同配流方式的双直线电机双作用柱塞泵系统的仿真模型。仿真发现,柱塞配流电机柱塞泵相比阀配流,其压力和流量脉动很小,其压力脉动幅度小于2%,流量脉动率仅为0.008。  相似文献   

13.
针对传统往复泵结构复杂、流量波动较大、凸轮驱动往复泵寿命短等问题,提出了一种凸轮和齿扇齿条复合驱动的新型往复泵,凸轮机构和齿扇齿条机构的交替工作驱动该往复泵的活塞做往复运动,使活塞呈现匀加速—匀速—匀减速的运动规律。建立了活塞的运动方程,并以三缸往复泵为例分析了往复泵的流量特性和相位误差角对流量脉动的影响,建立了凸轮和齿扇齿条复合驱动的三缸往复泵的动力学仿真模型,讨论了液力端载荷作用下活塞的运动特性。研究结果表明:凸轮和齿扇齿条复合驱动的三缸往复泵的流量脉动率仅为1.68%,已经达到曲柄滑块机构往复泵有空气包作用时的效果;相位误差对流量脉动存在一定影响,其大小应控制在±30′以内。仿真结果验证了所提出的凸轮和齿扇齿条复合驱动的新型往复泵的合理性与可行性。  相似文献   

14.
采用数值分析的方法对柱塞泵各腔内流体的流态进行分析,确定流体的流态,证明了在仿真计算时将流体模型设置为湍流模型的合理性,并在此基础上建立流体分析模型。该模型主要包括吸、排水腔流体模型、配流盘流体模型、润滑液体膜流体模型和柱塞腔流体模型5部分。运用CFD软件对该模型进行分析时,通过动网格技术实现对柱塞泵吸水、加压、排水整个工作过程周期性变化的仿真分析,模拟出柱塞泵工作过程中流场的动力学特性。最后,将仿真得到的柱塞泵排水口压力波动结果与试验结果进行比对,发现仿真结果与试验结果能够较好的吻合,验证了仿真分析的有效性。  相似文献   

15.
提出一种有别于常规阀配流泵的"斜盘转动而缸体不动"而采用缸体和配流阀一起旋转的双斜盘阀配流轴向柱塞式液压电机泵。建立该泵配流机构的数学模型,研究各种结构参数和工作参数对配流特性的影响,尤其是配流阀芯所受离心力对配流特性的影响。以仿真模型和得出的单个柱塞腔的压力响应曲线和输出流量曲线为基础,研究该类型泵流量脉动和侧向力脉动的特点,得出随着泵的工作转速增加,流量脉动和侧向力脉动都增大,当柱塞数量足够多时,柱塞数量的奇偶性在影响流量脉动上没有明显的区别,偶数个柱塞比奇数个柱塞产生的侧向力脉动要大。提出一种新型的阀配流轴向柱塞泵的变量调节方式,并研究该变量方式的原理和调节特性。样机泵的试验结果表明该泵的工作原理可行,进而展望双斜盘阀配流轴向柱塞式液压电机泵的应用前景。  相似文献   

16.
空化是影响液压系统动态特性的重要因素,为此开展了轴向柱塞泵低压环境下的工况研究。考虑气液两相混合油液的密度、体积弹性模量和黏度的影响,限制入口油腔的最低压力,建立轴向柱塞泵的压力流量模型,计算获得轴向柱塞泵在不同工况下的流量特性,并通过试验验证。研究表明:负载增大导致更严重的空化以及泄漏,并使容积效率降低;轴向柱塞泵在达到临界流量之后,转速提升只会加剧空化,而不能提升流量;最大容积效率出现在临界流量产生之前。为轴向柱塞泵低气压性能预测提供了理论支撑。  相似文献   

17.
新型圆弧齿轮泵有效地解决了传统齿轮泵存在的困油和流量脉动问题,然而,齿轮泵加工过程与装配安装相关的中心距误差对圆弧齿轮泵出口流量脉动特性有重要影响。推导了圆弧齿轮齿廓方程,并建立了圆弧齿轮泵内部齿腔压力模型,齿腔容积模型及流量脉动模型。在不同中心距误差下,分别在轻负荷工况(600 r/min,2 MPa)和中等负荷工况下(1480 r/min,8 MPa)进行流量脉动仿真。结果表明:当中心距误差在0.01 mm以内时,圆弧齿轮泵的出口流量逐渐增大,具有良好的动态特性;随着中心距误差增大到0.02 mm,圆弧齿轮泵的出口流量大幅度减小,该泵的动态特性变差。因此,需将中心距误差控制在一定范围内。中心距误差为0 mm及0.01 mm时,主从动齿轮的齿腔容积未发生较大变化;当中心距误差为0.02 mm 时,主、从动齿轮齿腔提前进入啮合,预示啮合位置发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号