首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孔结构对煤基活性炭电化学性能的影响   总被引:1,自引:1,他引:0  
以煤为前驱体,KOH为活化剂制备系列煤基活性炭电极材料.采用N_2吸附法及电化学测试对活性炭的孔结构和电化学性能进行了表征,研究了孔结构对活性炭电极材料的电化学性能的影响.结果表明,采用化学活化法可制备出比表面积1 048~3 581 m~2/g、中孔率7%~91%的活性炭电极材料.在3 mol/L KOH无机电解液体系及1 mol/L(C_2H_5)_4NBF_4/碳酸丙烯酯(PC)有机电解液体系中,活性炭电极材料的比电容分别达到322 F/g,190 F/g.2~3 nm的中孔对电解质离子在电极材料中的扩散有着重要作用,可以有效降低电解液的扩散阻力,提高电极材料比表面积的利用率,从而增强电容器的电化学性能.  相似文献   

2.
氨解改性煤基活性炭电极材料的电化学性能   总被引:1,自引:0,他引:1  
以印尼褐煤为原料、KOH活化法制备的煤基活性炭,采用氨水在高压条件下对其进行改性,应用N2吸附仪、傅里叶变换红外光谱(FTIR)表征了活性炭的孔结构和表面化学性质,测定了活性炭制作的电极在3mol/L KOH电解液中的电化学性能.结果表明,经过氨水高压改性处理的活性炭的比表面积和孔结构变化不大,但改性后活性炭表面的N原子含量增多,活性炭表面负载上一定量的C-N,N-H和-NO2等含氮官能团;改性后活性炭的比电容可达348F/g,比改性前提高27%;改性后活性炭电极的导电性增强,循环充放电性能更好,在42.5mA/g的电流密度下经1 000次循环充放电,比电容的保持率可达98.9%.  相似文献   

3.
为提高碳基电化学电容器的比电容和和能量密度,采用化学沉积法将少量镍氧化物沉积在活性炭上,得到沉积镍氧化物的活性炭材料并以此材料做成复合电极用于混合型电化学电容器的正极.研究显示,沉积镍氧化物后,碳材料的比表面积略有减小,但孔径分布没有明显变化.复合电极作为混合型电容器的正极时,比电容达到194.01F/g,比纯活性炭正极的175F/g提高了10.84%;复合电极在6mol/L的电解液中析氧电势为0.296V,比纯活性炭电极的0.220V高出0.076V,因此,具有较高的能量密度.不同放电电流密度下的恒电流测试结果显示,沉积镍氧化物活性炭复合电极的比电容值没有明显变化,与纯活性炭电极一样表现出良好的功率特性.采用沉积镍氧化物活性炭作为正极材料的复合型电容器,在6mol/L的KOH水溶液作为电解液时,单体电容器的工作电压可以达到1.2V,高于纯活性炭制备的双层型电容器0.2V.充放电循环10000次时,复合型电容器的电容仅降低到初始电容的90%.上述结果表明,在活性炭上沉积少量镍氧化物颗粒可以提高碳基电化学电容器的比电容和能量密度.  相似文献   

4.
以应用于超级电容电极的锰氧化物材料为主要研究对象,用溶剂热法制备四氧化三锰(Mn3O4)电极材料,以X线衍射(XRD)和扫描电子显微镜(SEM)对材料性能进行了表征,采用循环伏安法、恒电流充放电法和电化学阻抗法对材料电性能进行了测试,分别以1 mol/L硫酸钠(Na2SO4)和6 mol/L氢氧化钾(KOH)为电解液研究了不同电解液对Mn3O4电极材料性能的影响.结果表明,当电流密度为0.5 A/g时,Mn3O4在KOH电解液中的比电容为48 F/g,相比在Na2SO4电解液中所得的比电容22 F/g要大.  相似文献   

5.
以生石油焦为原料,采用KOH活化法制备纳米门炭。采用氮气吸附法、X射线衍射(XRD)和光电子能谱衍射(XPS)对其孔结构、微晶结构和表面性质进行分析,并以其为电极组装超级电容器,测试了电容特性。结果表明:纳米门炭可在3.5V电压下工作,通过首次充电过程中的电化学活化而获得较大的比电容。样品N900比表面积仅为61m2/g,但比电容确高达136.7F/g,能量密度高达58.1Wh/kg。  相似文献   

6.
采用化学沉淀法制备Ni(OH)_2,组装的氢氧化镍超级电容器在0.1A/g的电流密度下,首次放电比电容为206.6F/g,等效串联电阻为25.6Ω,能量密度为9.97W·h/kg。由于Ni(OH)_2的氧化还原反应进行得充分彻底,所以等效串联电阻小,比电容和能量密度均高于活性炭超级电容器。复合超级电容器的各项储能性能均介于两者之间。当电流密度增大到0.6A/g时,活性炭超级电容器被击穿,而复合超级电容器和氢氧化镍超级电容器在1A/g时的比电容仍然高于160F/g,倍率性能较好。  相似文献   

7.
用KOH活化活性炭作为电极材料制作双电层电容器,用接触角测定其润湿性,用恒流充放电、循环伏安等方法研究活性炭的电化学性能。结果显示,炭膜浸润时间最短约为90min,双电层电容器的比电容随比表面积增加而增大。比表面积为1932m^2·g^-1的炭样在1mol·L^-1的H2SO4电解~(677mA·g^-1)中充放电最大比电容为167F·g^-1。  相似文献   

8.
在制作双电层电容器基础上,采用电化学沉积法,在活性炭电极表面负载氧化镍.XRD测定表明,镍氧化物以NiO形态负载于活性炭电极上.电化学性能研究表明,氧化镍/活性炭复合电极循环伏安曲线呈矩形特征,具有良好的电容特性;其交流阻抗谱由圆弧和直线组成,电化学过程受扩散和氧化镍的赝电容行为控制;其恒电流充电曲线呈直线,电容特性显著,大电流性能良好,比容量达104.7 F/g,是活性炭电极比容量的1.35倍.  相似文献   

9.
以太西无烟煤和灵武烟煤的配合煤为原料在硝酸锰存在下经水蒸气活化制备了活性炭,利用气体吸附仪和电化学工作站表征其孔结构及循环伏安、交流阻抗和恒流充放电等电化学性能.结果表明,比表面积SBET小于900m2/g时,比电容与比表面积成正比,SBET大于900m2/g时,比电容与比表面积成反比;活性炭的总孔容和微孔孔容对比电容的影响与比表面积存在相似的规律;中孔对比电容的影响最为显著,比电容随中孔孔容的增加迅速增加,在0.11~0.14cm3/g区间增幅明显减小,大于0.14cm3/g后迅速减小;制备的煤基活性炭电极的电化学行为表现为双电层电容与准电容协同作用;活性炭电极接触电阻很小,最大约为0.8Ω.  相似文献   

10.
为了提高双金属氧化物电极材料的电化学性能和循环稳定性,通过简单省时的溶剂热煅烧法制得多孔铁钴双金属氧化物(FexCoyO4)纳米球,并探究加入不同比例的铁钴对电化学性能的影响;通过XRD、SEM和XPS对所得的电极材料进行表征,利用电化学工作站和蓝电电池测试系统等进行电化学性能测试。结果表明:多孔的双金属氧化物纳米球可以有效地提高超级电容器的电化学性能,同时还具有超长的循环寿命;当加入的铁钴比例为1∶1时,所制备的FeCoO4多孔纳米球电极表现出最大比电容596 F/g;将电极材料组装为对称超级电容器,测试其循环稳定性,在3 A/g的电流密度下循环20 000圈后,其容量保持率可增加至120%。  相似文献   

11.
为了研究粘结剂成分及含量对超级电容器性能的影响,制备了活性炭、碳纳米管、PTFE和PVDF质量比为7∶1∶1∶1的电极,其首次放电比电容为193.18F/g,30次循环后比电容保持率高达95.0%。该电极在2A/g时比电容为146.12F/g,电极的能量密度和倍率性能均高于未添加PVDF的电极。表明高粘度PVDF粘结剂可以使电极片表面光滑具有良好的韧性。但当PVDF和PTFE的质量比为2∶1时,电极片中过多的PVDF发生团聚,形成导电聚集体,使得超级电容器在大电流下易被击穿,能量密度显著下降。  相似文献   

12.
为研究石墨烯在超级电容器中的导电效果,将石墨烯量子点(GQDs)代替商品化导电炭黑(CB)用作新型纳米尺寸(~10 nm)的导电剂,分别采用直接液相复合和热还原复合方式制备具有良好导电网络的AC-G和AC-HG系列电极,并考察两种复合方式对活性炭电极结构特性与双电层电容性能的影响.结果表明:添加1%GQDs的AC电极呈现出优异的比电容和倍率性能,当电流密度从0.1 A/g增加到10 A/g,其比电容由110 F/g降到85 F/g,明显优于添加10%CB的AC电极(100 F/g降为65 F/g);热处理过程大幅去除了GQDs所带含氧官能团,AC-HG电极的电子电导率提高而离子电导率降低,因此其倍率性能略有下降,但循环稳定性大幅提高.  相似文献   

13.
超级电容器具有大充放电速率、良好的循环稳定性及高功率密度等优点, 是一种新兴的绿色环保储能器件。采用简单的水热合成法制备镍铝层状双金属氢氧化物(NiAl-LDHs) 超级电容器电极材料, 探究不同镍铝比对其形貌组成及电化学性能的影响。所制备的Ni1Al1-LDHs 电极材料在电流密度为1 A/g 时表现出378 F/g 的高比电容。以活性炭(AC) 为负极组成的Ni1Al1-LDHs//AC 非对称超级电容器在能量密度为27.5 Wh/kg 时, 具有1.4 kW/kg 的高功率密度, 表现出优异的电化学性能。  相似文献   

14.
为提高超级电容器的电化学性能,利用木屑在氮气气氛下碳化后制得具有碳微米管结构的生物碳,进而采用电沉积法在生物碳上沉积二氧化锰.中空多孔的碳结构具有更多的活性点位和离子传输途径,为离子的存储和运输提供了便利.所制备的MnO2/C复合材料用作超级电容器电极,在1 A/g的电流密度下,比电容达到800.3 F/g,该MnO2...  相似文献   

15.
采用溶剂热法制备了超级电容器锰酸钴(CoMn2O4)电极材料.通过X线衍射(XRD)和扫描电子显微镜(SEM)对材料进行表征.XRD测试结果表明,样品为CoMn2O4.SEM结果显示,所制得的CoMn2O4在亚微米到微米尺度下形成花形团簇.电化学性能测试表明,CoMn2O4电极的比电容可达到179 F/g,且具有良好的电化学性能.  相似文献   

16.
β-Ni(OH)2/C混合超级电容的电极行为   总被引:4,自引:0,他引:4  
分别利用β-Ni(OH)2和活性炭为正、负极活性物质,通过循环伏安和双电极恒流充放电测试考察了镍正极与碳负极组合成混合超级电容电极在KOH电解液中的电极行为,结果表明,镍正极的法拉第电化学反应过程和碳负极非法拉第双电层过程可以很好的结合起来,体现出超级电容的充放特性,对于碳电极对,由于正极容量的限制,使得工作电压仅为1V左右,双电极比容量为39.6F/g,而镍正极/碳负极组合工作电压可高达1.5V,双电极比容量能达到90.7F/g,在相同电流下进行放电,镍/碳电极对功率密度可达到碳电极对的2-3倍,能量密度可高达10倍。  相似文献   

17.
以硝酸镍为原料,采用溶胶一凝胶法制备氢氧化镍,用真空烧结炉在9.5×10^-3-1.5×10^-2Pa且升温速度3℃/min条件下,于不同温度下对氢氧化镍热处理后得到氧化镍,与活性炭电极组成非对称超级电容器后,分别以不同的电流密度对超级电容器充放电测试,比较样品在200 mA/g充放电测试时的值。结果表明:在300℃真空处理所得氧化镍具有最高比电容值,达到361.92 F/g。对比研究真空烧结炉和管式电阻炉两种工艺下对电容器比电容量的影响,表明Ni(OH)2经真空烧结炉处理所得NiO的比电容均高于采用管式电阻炉处理所得NiO的比电容。因而采用真空烧结炉制备NiO是一种提高比电容的有效手段。  相似文献   

18.
成功制备了金属有机框架M3(BTC)2·12H2O(M=Ni和Co),并将其应用于超级电容器电极材料中,通过X线衍射(XRD)表征发现,这些化合物具有同类型的结构,在6 mol/L电解液中,采用循环伏安法和1 000次充放电循环测试其电化学性能.实验表明:Ni3 (BTC)2·12H2O电极材料在扫描速率5 mV/s下,比电容达到了430 F/g;在高扫描速率200 mV/s下,比电容为154 F/g;在扫描速率5 mV/s下1 000次充放电测试其循环寿命后发现,比电容保持率为86%.  相似文献   

19.
针对活性炭电极超级电容器性能偏低的问题,依据双电层电容器工作原理,以活性炭、乙炔黑、质量分数为15%的聚四氟乙烯、异丙醇为原料,采用粉末压片技术,制备了活性炭质量分数分别为60%、65%、70%、75%和80%的超级电容器电极材料。通过扫描速率分别为5 mV/s、10mV/s、20 mV/s、50 mV/s、100 mV/s和200 mV/s的循环伏安测试,分析了活性炭电极的比电容、比能量和比功率。结果表明,当活性炭质量分数为70%、扫描速率为5 mV/s时,比电容为189.3 F/g,比能量为26.3 W·h/kg;当活性炭质量分数为70%、扫描速率为20 mV/s时,比功率为916.6 W/kg。确定了电极材料中活性炭的最优配比为70%,为基于活性炭电极的超级电容器制备提供了重要参考。  相似文献   

20.
采用高能球磨法制备了Al/MnO2超级电容器电极材料;运用X射线衍射和扫描电镜对Al/MnO2进行了物相分析和形貌观察。结果表明,所得球磨粉体为纯MnO2物相,Al的加入未明显改变MnO2衍射图样。以Al/MnO2为超级电容器电极材料进行电化学性能测试,不同含量配比的Al/MnO2电极材料的比电容在初始几个电化学循环中均有明显下降,但其比电容均大于未添加Al的MnO2电极;Al添加量为Al0.05/Mn0.95O2时,电极的电化学性能最好。Al/MnO2电极材料电化学性能提高的原因可能是由于Al的加入改善了Al/MnO2电极体系的导电性能,从而有利于电极氧化还原反应的进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号