首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used a complex sol–gel process to synthesize a family of compounds LiNixCo1−xO2 (x = 0, 0.25, 0.5, 0.75, 1). These compounds are candidates for electrode materials in high-energy-density batteries. Starting sols were prepared from xNi2+ + (1 − x) Co2+ acetates/ascorbic acid aqueous solutions by alkalizing with LiOH and NH3. With thermal treatment in air, nickel carbonates formed in quantities roughly proportional to Ni concentration. The carbonate impurities could not be fully removed by heating in air to high temperatures. Because formation of pure layered oxides was inhibited by the presence of the carbonates, we developed a new way to remove them from just-formed precursors by treating the intermediate phases (those formed after calcination at 750 °C) with concentrated HNO3 and H2O2. All resulting powders were phase pure by X-ray diffraction and were easily friable. Various electrochemical properties of compacts prepared from these powders were measured.  相似文献   

2.
Nanocrystalline 0.65 PbMg1/3Nb2/3O3–0.35PbTiO3 powders were synthesized by citrate gel method. The gel was prepared using citrate (titanium and niobium) and nitrate (lead and magnesium) salts. The hard gel obtained after completion of the reaction was treated to get the desired phase. Thermal analysis of the gel was done to optimize the calcination temperature. The calcined powders were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The crystallite size and the effective strain were found to be 50 nm and 0.03584 N, respectively.  相似文献   

3.
Nanocrystalline Y3− x MM x Fe5O12 powders (MM denotes Misch-metal, x =0.0, 0.25, 0.5, 0.75, and 1.0) were synthesized by a sol–gel combustion method. Magnetic properties and crystalline structures were investigated using X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), and a scanning electron microscope. The XRD patterns showed that the single-phase garnet of Y3− x MM x Fe5O12 was formed at x values ≤1.0. The saturation magnetization of powders increased with decreasing MM content and reached the maximum value at Y3Fe5O12. The crystallite size of powders calcined at 800°C for 3 h was in the range of 38–53 nm.  相似文献   

4.
The photocatalytic behavior of different TiO2-based photocatalysts was reported for gas-phase toluene removal under both UV and visible light illumination, and compared to that of commercial P25 (Degussa) TiO2. Promotion by sulfates and the use of nanosized anatase TiO2 were reported to strongly increase the toluene removal efficiency under UV illumination. Nanosized-anatase was prepared by a protecting group sol–gel synthesis using hexamethyldisilazane as crystallite growth inhibitor. Sulfates played a double positive role, with photogenerated electrons transfer effects limiting charge recombination and as repulsive species for strongly adsorbed aromatic intermediates that act as poisons. The decrease in particle size obtained on nanosized anatase TiO2 (5 nm) yielded a considerable enhancement in the toluene removal efficiency. Pure high surface area rutile has been synthesized at low temperature by a polyethylenglycol-containing sol–gel method for visible light activation purposes. A two-way semiconductor coupling phenomenon, consisting of a reciprocal electron/hole transfer between two visible light-activated oxides, rutile TiO2 and WO3, was proposed to explain the large gain in efficiency when adding low amounts of WO3 to rutile TiO2.  相似文献   

5.
Bimodal nanocrystalline mesoporous TiO2 powders with high photocatalytic activity were prepared by a hydrothermal method using tetrabutylorthotitanate (TiO(C4H9)4, TBOT) as precursor. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption measurements. The photocatalytic activity of the as-prepared TiO2 powders was evaluated by the photocatalytic degradation of acetone (CH3COCH3) under UV-light irradiation at room temperature in air. The effects of hydrothermal temperature and time on the microstructures and photocatalytic activity of the TiO2 powders were investigated and discussed. It was found that hydrothermal treatment enhanced the phase transformation of the TiO2 powders from amorphous to anatase and crystallization of anatase. All TiO2 powders after hydrothermal treatment showed bimodal pore-size distributions in the mesoporous region: one was intra-aggregated pores with maximum pore diameters of ca. 4–8 nm and the other with inter-aggregated pores with maximum pore diameters of ca. 45–50 nm. With increasing hydrothermal temperature and time, the average crystallite size and average pore size increased, in contrast, the Brunauer-Emmett-Teller (BET) specific surface areas, pore volumes and porosity steadily decreased. An optimal hydrothermal condition (180 °C for 10 h) was determined. The photocatalytic activity of the prepared TiO2 powders under optimal hydrothermal conditions was more than three times higher than that of Degussa P25.  相似文献   

6.
Fischer–Tropsch synthesis was carried out in slurry phase over uniformly dispersed Co–SiO2 catalysts prepared by the sol–gel method. When 0.01–1 wt.% of noble metals were added to the Co–SiO2 catalysts, a high and stable catalytic activity was obtained over 60 h of the reaction at 503 K and 1 MPa. The addition of noble metals increased the reducibility of surface Co on the catalysts, without changing the particle size of Co metal significantly. High dispersion of metallic Co species stabilized on SiO2 was responsible for stable activity. The uniform pore size of the catalysts was enlarged by varying the preparation conditions and by adding organic compounds such as N,N-dimethylformamide and formamide. Increased pore size resulted in decrease in CO conversion and selectivity for CO2, a byproduct, and an increase in the olefin/paraffin ratio of the products. By modifying the surface of wide pore silica with Co–SiO2 prepared by the sol–gel method, a bimodal pore structured catalyst was prepared. The bimodal catalyst showed high catalytic performance with reducing the amount of the expensive sol–gel Co–SiO2.  相似文献   

7.
A novel sol–gel method based on V2O5·nH2O hydro-gel was developed to synthesize nanocrystalline Li3V2(PO4)3/carbon composite material. In this route, V2O5·nH2O hydro-gel, NH4H2PO4, Li2CO3 and high-surface-area carbon were used as starting materials to prepare precursor, and the Li3V2(PO4)3/carbon was obtained by sintering precursor at 750 °C for 4 h in flowing argon. The sol–gel synthesis ensures homogeneity of the precursors and improved reactivity. The sample was characterized by XRD, SEM and TEM. X-ray diffraction results show Li3V2(PO4)3 sample is monoclinic structure with the space group of P21/n. The TEM image indicates that the Li3V2(PO4)3 particles modified by conductive carbon are about 70 nm in diameter. The Li3V2(PO4)3/carbon system showed that the discharge capacities in the first and 50th cycle are about 155.3 and 143.6 mAh/g, respectively, in the range of 3.0–4.8 V. The sol–gel method is fit for the preparation of Li3V2(PO4)3/carbon composite material which may offer some favorable properties for commercial application.  相似文献   

8.
Co–Nb2O5–SiO2 catalysts were prepared using three different sol–gel procedures: (i) the colloidal sol–gel method using NbCl5 and SiCl4 as precursors; (ii) the polymeric sol–gel method using niobium ethoxide and tetraethyl-orthosilicate (TEOS); (iii) an intermediate procedure between the colloidal and polymeric sol–gel method in which the precursors were those utilized in the CSG but dissolved in a mixture of anhydrous ethanol and CCl4. In all procedures, the elimination of the solvent carried out between 80 and 110°C was followed by a reduction in hydrogen flow (30 ml min−1) at 773 K. Following these procedures, samples containing 10 wt.% Co and 15 wt.% niobium oxide (expressed as Nb2O5) were obtained. The characterization of the catalysts was performed using various techniques: N2 adsorption and desorption curves at 77 K, NH3- and H2-chemisorption, TPO, XPS, XRD, and solid state 1H MAS-NMR. Hydrogenolysis of butane was evaluated. The low reaction rates are assigned to the effect of the metal size, whereas the isobutane selectivity as well as the relatively high stability is due to the acidity of the support.  相似文献   

9.
The results of hydrothermal preparation of BaTiO3 fine powders are reported. The effects of the reaction temperature, the molar ratio of Ba/Ti in the precursors, the chemical form of the precursors on the phase composition, the size and the morphology of the products are presented. The higher the temperature, the higher the basicity and the greater the molar ratio of Ba/Ti in the precursor, the easier the formation of the perovskite type BaTiO3 crystallite will be. It was found that BaTiO3 microcrystals(150–300 nm) could be synthesized through the hydrothermal reaction of commercial TiO2 with Ba(OH)2 aqueous solution, while the hydrothermal reaction of the newly prepared Ti(OH)4 gel with the Ba(OH)2 solution produced highly crystallized, well dispersed perovskite type BaTiO3 crystallites with very fine (< 100 nm) particles. The newly prepared Ti(OH)4 gel proved to be suitable precursor for the hydrothermal preparation of BaTiO3 fine powders. X-ray diffraction (XRD) of the hydrothermal BaTiO3 powders reveals a simple cubic perovskite structure. Above that, the lattice constant decreased with the increase of the reaction temperature. These abnormal crystallographic features are assumed to result from lattice defects, due to OH incorporation in the perovskite lattice.  相似文献   

10.
The development of a catalytically active filter element for combined particle separation and NOx removal or VOC total oxidation, respectively, is presented. For NOx removal by selective catalytic reduction (SCR) a catalytic coating based on a TiO2–V2O5–WO3 catalyst system was developed on a ceramic filter element. Different TiO2 sols of tailor-made mean particle size between 40 and 190 nm were prepared by the sol–gel process and used for the impregnation of filter element cylinders by the incipient wetness technique. The obtained TiO2-impregnated sintered filter element cylinders exhibit BET surface areas in the range between 0.5 and 1.3 m2/g. Selected TiO2-impregnated filter element cylinders of high BET surface area were catalytically activated by impregnation with a V2O5 and WO3 precursor solution. The obtained catalytic filter element cylinders show high SCR activity leading to 96% NO conversion at 300 °C, a filtration velocity of 2 cm/s and an NO inlet concentration of 500 vol.-ppm. The corresponding differential pressures fulfill the requirements for typical hot gas filtration applications. For VOC total oxidation, a TiO2-impregnated filter element support was catalytically activated with a Pt/V2O5 system. Complete oxidation of propene with 100% selectivity to CO2 was achieved at 300 °C, a filtration velocity of 2 cm/s and a propene inlet concentration of 300 vol.-ppm.  相似文献   

11.
Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders   总被引:5,自引:0,他引:5  
Nanocrystalline cerium(IV) oxide (CeO2) powders were prepared by heating solutions of cerium(IV) salts in the presence of urea under hydrothermal conditions at 120° to 180°C. The effects of the concentration of urea and hydrothermal treatment temperature on the morphology and crystallite size of the synthesized particles were investigated. The synthesized particles were angular, ultrafine CeO2, with a cubic fluorite structure. Their crystallite size decreased from 20 to 10 nm with increasing urea concentration from 2 times to 8 times that of the Ce4+ ion. The size only slightly changed by calcining at temperatures below 600°C.  相似文献   

12.
Freestanding and crack-free titania–silica aerogels with high titanium content (i.e., Ti/Si = 1) were successfully prepared by adjusting the hydrolysis of the two alkoxide precursors to a comparable rate during the sol–gel processing. Two titania–silica aerogels were prepared by ethanol and CO2 supercritical drying methods. Well-dispersed, nanometer-sized anatase crystal domains (ca. 10 nm) were crystallized by high temperature, ethanol supercritical drying. The crystalline domains were solidly anchored to the aerogel network by Ti–O–Si bonds. Titania–silica aerogels prepared by CO2 supercritical drying method were devoid of TiO2 crystals. A molecular-level mixing was achieved and anatase TiO2 was only crystallized with difficulty by high temperature calcination (1073 K). Both aerogels were mesoporous and displayed similar open pore structure that is readily accessible to reactant molecules. However, only the titania–silica aerogel with anatase TiO2 prepared by ethanol supercritical drying was active for the gas phase, photocatalytic oxidation of volatile organic compounds (i.e., isopropanol and trichloroethylene). Catalysts prepared from Degussa P25 TiO2 displayed lower activity under similar reaction conditions.  相似文献   

13.
Nanocrystalline α-Al2O3 ceramic powders have been prepared from an aqueous solution of aluminum nitrate and sucrose. Soluble Al ion-sucrose solution forms the precursor material once it is completely dehydrated. Heat treatment of the dehydrated precursors at low temperature (600°C) results in the formation of porous single-phase α-Al2O3. The precursor and heat-treated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET surface area analysis. The phase-pure nanocrystalline α-Al2O3 particles had an average specific surface area of >190 m2/g, with an average pore size between 18 and 25 nm.  相似文献   

14.
TiO2 thin films were prepared on SiO2/Si(100) substrates by the sol–gel process. XRD results indicate that the major phase of TiO2 thin films is anatase. The surface morphology and cross-section are observed by FE-SEM. The surface of thin films is dense, free of cracks and flat. The average grain size is about 60–100 nm in diameter. The thickness of single layer TiO2 thin films is about 60 nm, which increases with the concentration of solution. Ellipsometric angles ψ, Δ are investigated by spectroscopic ellipsometry. The optical constant and the thickness of TiO2 thin films are fitted according to Cauchy dispersion model. The results reveal that the refractive index and the extinction coefficient of TiO2 thin films in wavelength above 800 nm are about 2.09–2.20 and 0.026, respectively. The influences of processing conditions on the optical constants and thicknesses of TiO2 thin films are also discussed.  相似文献   

15.
Sol–gel derived rough anatase films without controlled particle sizes were prepared by surfactant templating. The coating sol–gel was obtained by hydrolysis of Ti(OC3H7)4 in ethanol/HNO3 solution. The gel films, prepared by dipping glass substrates in surfactant solutions, were dried after immersion under an atmospheric pressure. The rough films of TiO2 anatase were obtained after calcining at 500 °C. The resultant films were transparent, semitransparent or opaque and 136–402 nm thick. It was found that the TiO2 films prepared from the sol–gel with surfactant showed a granular nanostructure, and they were composed of regular particles, for example; between 50 and 70 nm. The roughness of the films was found to depend on the surfactant concentration in the sol–gel solution and can show a roughness between 0.82 and near of 17 nm. The photocatalytic activity of the films for the degradation and mineralization of phenol, an industrial pollutant, in water and under 365 nm irradiation was improved by the surfactant modification. Kinetic analysis of degradation and mineralization of phenol in water were employed to evaluate the different TiO2 films under the same experimental conditions. The global photonic efficiency for degradation and mineralization of phenol ξg, was calculated to facilitate comparison with a TiO2 standard photocatalyst named Degussa P-25.  相似文献   

16.
Nanocrystalline α-Al2O3 powders have been prepared by pyrolysis of a complex compound of aluminum with triethanolamine (TEA). The soluble metal-ion–TEA complex forms the precursor material on complete dehydration of the complex of aluminum-TEA. The single-phase α-Al2O3 powder has resulted after heat treatment at 1025°C. The precursors and the heat-treated final powders have been characterized by X-ray diffractometry, thermogravimetric and differential thermal analysis, and transmission electron microscopy (TEM). The average particle sizes as measured from X-ray line broadening and TEM are ∼25 nm. The powder has crystallite sizes of the same order indicates the poor agglomeration of crystallites.  相似文献   

17.
Nanocrystalline CeO2 powders were prepared electrochemically by the cathodic electrogeneration of base, and their sintering behavior was investigated. X-ray diffraction and transmission electron microscopy revealed that the as-prepared powders were crystalline cerium(IV) oxide with the cubic fluorite structure. The lattice parameter of the electrogenerated material was 0.5419 nm. The powders consisted of nonaggregated, faceted particles. The average crystallite size was a function of the solution temperature. It increased from 10 nm at 29°C to 14 nm at 80°C. Consolidated powders were sintered in air at both a constant heating rate of 10°C/min and under isothermal conditions. The temperature at which sintering started (750°C) for nanocrystalline CeO2 powders was only about 100°C lower than that of coarser-grained powders (850°C). However, the sintering rate was enhanced. The temperature at which shrinkage stopped was 200°-300°C lower with the nanoscale powder than with micrometer-sized powders. A sintered specimen with 99.8% of theoretical density and a grain size of about 350 nm was obtained by sintering at 1300°C for 2 h.  相似文献   

18.
Tin oxide–silica composite aerogels were successfully prepared with a co-fed precursor sol–gel process. The crystallinity of the tin oxide nanoparticles, embedded in the mesoporous SiO2 network, was improved with increasing the post-reaction thermal treatment temperature. The composite aerogels exhibited a rich photoluminescence (PL) emission contributed by both SnO2 and SiO2. The PL peak of 346 nm was from the near band edge emission of the tin oxide nanoparticles, and the ones located at 310 and 476 nm were attributable to the oxygen deficiencies of the silica network. Three more emission peaks, 387, 432, and 522 nm, were observed, with the 387 nm peak contributed by the oxygen vacancies VO++, the 432 nm peak by the Sn interstitials, and the 522 nm peak by the oxygen vacancies VO+, respectively, of the tin oxide nanoparticles. The intensities of these three defect level emissions were found decreased, as compared to that of the near band edge emission, with increasing the post-reaction thermal treatment temperature as the tin oxide crystallinity improved.  相似文献   

19.
The effect of pH during sol–gel synthesis on the structural and physicochemical properties of a Pd–Al2O3 three-way catalyst (TWC) prepared by the sol–gel method was investigated by using BET, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and solid state 27Al MAS NMR. The Pd–Al2O3 catalyst prepared at pH=10 (Pd–Al2O3–B) showed a high activity in three-way catalytic reaction, a high dispersion of Pd, and large surface area and pore volume. A basic condition (pH=10) in the sol–gel process was essential for the preparation of highly dispersed palladium clusters on alumina gel. The formation of highly stable palladium oxide species in Pd–Al2O3–B that were not completely reduced at 423 K was ascribed to the strong interaction between Pd and oxygen in alumina texture, resulting in the formation of –Al–O–Pd bond.  相似文献   

20.
Nanocrystalline TiO2 incorporated with praseodymium(III) nitrate has been prepared by an ultrasound method in a sol–gel process. The prepared sample is characterized by X-ray diffraction (XRD), nitrogen adsorption (BET surface area), UV–vis diffuse reflectance spectroscopy (UV–Vis DRS) and X-ray photoelectron spectroscopy (XPS). The prepared material consists of TiO2 nanocrystalline with 5 nm size incorporated with highly dispersed Pr(NO3)3. Visible light absorptions at 444, 469, 482 and 590 nm are observed in the prepared sample. These bands are attributed to the 4f transitions 3H4 → 3P2, 3H4 → 3P1, 3H4 → 3P0 and 3H4 → 1D2 of praseodymium(III) ions, respectively. This sample Pr(NO3)3-TiO2, as a novel visible light photocatalyst, shows high activity and stability in the decomposing rhodamine-B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. Results examined by electron spin resonance spectroscopy (ESR) reveal that the irradiation (>420 nm) of the photocatalyst dispersed in RhB aqueous solution induces the generation of highly active hydroxyl radicals (OH), leading to the cleavage of the whole conjugated chromophore structure of RhB. A mechanism based on local excitation of praseodymium(III) nitrate chromophore and interfacial charge transfer from the chromophore to TiO2 is proposed to explain the formation of active hydroxyl radicals in the photocatalytic system under visible light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号