首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cubic Nitride Boron (CBN) tools are generally used for machining harder alloys such as hardened high Cr steels, titanium and nickel alloys. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of different CBN tool grades in finish turning Ti–6Al–4V (IMI 318) alloy at high cutting conditions, up to 250 m min−1, with various coolant supplies. Tool wear, failure modes, cutting and feed forces and surface roughness of machined surfaces were monitored and used to access the performance of the cutting tools. Comparative trials were carried out with uncoated carbide tools when machining at a speed of 150 m min−1. Test results show that the performance of CBN tools, in terms of tool life, at the cutting conditions investigated is poor relative to uncoated carbide tools, as expected and often, reported due probably to rapid notching and excessive chipping of the cutting edge associated with a relatively high diffusion wear rate that tends to weaken the bond strength of the tool substrate. An increase in the CBN content of the cutting tool also led to a reduction in tool life when machining at the cutting conditions investigated.  相似文献   

2.
This work is focused on the combined study of the evolution of tool wear, quality of machined holes and surface integrity of work-piece, in the dry drilling of alloy Ti–6Al–4V. Tool wear was studied with optical microscope and SEM–EDS techniques. The quality of machined holes was estimated in terms of geometrical accuracy and burr formation. Surface integrity involves the study of surface roughness, metallurgical alterations and microhardness tests. The end of tool life was reached because of catastrophic failure of the drill, but no significant progressive wear in cutting zone was observed previously. High hole quality was observed even near tool catastrophic failure, evaluated from the point of view of dimensions, surface roughness and burr height. However, microhardness measurements and SEM–EDS analysis of work-piece showed important microstructural changes related with a loss of mechanical properties. Depending on the application of the machined component, the state of the work-piece could be more restrictive than the tool wear, and the end of tool life should be established from the point of view of controlled damage in a work-piece.  相似文献   

3.
The electrical discharge machining (EDM) process produces the recast layer with or without cracks on the surface that requires a remedial post-treatment in the manufacture of critical or highly stressed surfaces. One of the frequently used post-treatment processes is also the abrasive electrochemical grinding (AECG) and it has been widely used in the precision machining of difficult-to-cut materials due to an enhanced surface integrity and productivity. The aim of this study is to investigate improvability of surface integrity in terms of machining voltage, electrolyte flow rate and table feed rate parameters of AECG in EDMed Ti6Al4V alloy. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrograph (EDS) and surface roughness measurement were performed to study the surface characteristics of the machined samples. Experimental results indicate that the AECG process effectively improves the surface roughness and eliminates the EDM damages completely by setting suitable grinding parameters.  相似文献   

4.
Laser gas assisted processing can be used to modify the surface properties of Ti–6Al–4V alloy through the use of gaseous interaction with the laser melted surface. Laser surface melting of titanium and its alloys in nitrogen to form a layer of TiN embedded in a metallic matrix which is enriched in alloying elements has attracted considerable interest. The surface roughness of the laser-treated surface is poor, therefore, a secondary processing becomes essential. In the present study, duplex treatment of Ti–6Al–4V alloy was carried out. The alloy surface was melted initially under a controlled nitrogen atmosphere, which in turn resulted in a laser-induced nitrided surface. The resulting workpiece surface, then, was PVD TiN coated. In order to assess the wear properties of the resulting surface, friction tests were carried out. SEM, XRD and microhardness were carried out for microstructural analysis and material characterization. It was found that the adhesion of the TiN coating to the base alloy improved considerably in the case of laser-treated workpieces and smooth transition in plastic shearing resistance between the TiN coating and the base alloy enhanced the wear properties of the laser-treated surface.  相似文献   

5.
The corrosion behavior of a thin sheet of Ti–6Al–4V alloy was investigated in hydrochloric acid solution after welding by gas tungsten arc welding. The resulting microstructure of the weld metal (WM) consisted of coarse prior β grains containing fine acicular α platelets. It was found that both base metal (BM) and WM exhibited active–passive behavior after surface activation in open circuit potential experiments. The corrosion resistance of the BM and WM was found to decrease with increasing the temperature and acid concentration. However, the WM exhibited higher corrosion rate than the BM in all examined conditions. These results were also corroborated by electrochemical impedance spectroscopy measurements. Furthermore, it was revealed that the activation energy of the corrosion process for the WM was lower as compared to the BM, which confirmed the inferior corrosion behavior of the WM.  相似文献   

6.
7.
K. Tokaji   《Scripta materialia》2006,54(12):2143-2148
High cycle fatigue behaviour of Ti–6Al–4V alloy was studied at 623 K and 723 K. Fatigue strength decreased at elevated temperatures compared with at ambient temperature. In the short life regime, fatigue strength was lower at 723 K than at 623 K, but in the long life regime it was nearly the same at both temperatures. At elevated temperatures, cracks were generated earlier at applied stresses below the fatigue limit at ambient temperature, indicating lowered crack initiation resistance. Small cracks grew faster at elevated temperatures than at ambient temperature, which became more noticeable with increasing temperature. After allowing for the elastic modulus, small cracks still grew faster at elevated temperatures.  相似文献   

8.
Thermodynamic analysis of three binary Ti-based alloys: Ti–Al, Ti–V, and Al–V, as well as ternary alloy Ti–Al–V, is shown in this paper. Thermodynamic analysis involved thermodynamic determination of activities, coefficient of activities, partial and integral values for enthalpies and Gibbs energies of mixing and excess energies at four different temperatures: 2000, 2073, 2200 and 2273 K, as well as calculated phase diagrams for the investigated binary and ternary systems. The FactSage is used for all thermodynamic calculations.  相似文献   

9.
Orthogonal cutting tests were undertaken to investigate the mechanisms of chip formation for a Ti–6Al–4V alloy and to assess the influences of such on acoustic emission (AE). Within the range of conditions employed (cutting speed, vc=0.25–3.0 m/s, feed, f=20–100 μm), saw-tooth chips were produced. A transition from aperiodic to periodic saw-tooth chip formation occurring with increases in cutting speed and/or feed. Examination of chips formed shortly after the instant of tool engagement, where the undeformed chip thickness is slightly greater than the minimum undeformed chip thickness, revealed a continuous chip characterised by the presence of fine lamellae on its free surface. In agreement with the consensus that shear localisation in machining Ti and its alloys is due to the occurrence of a thermo-plastic instability, the underside of saw-tooth segments formed at relatively high cutting speeds, exhibiting evidence of ductile fracture. Chips formed at lower cutting speeds suggest that cleavage is the mechanism of catastrophic failure, at least within the upper region of the primary shear zone. An additional characteristic of machining Ti–6Al–4V alloy at high cutting speeds is the occurrence of welding between the chip and the tool. Fracture of such welds appears to be the dominant source of AE. The results are discussed with reference to the machining of hardened steels, another class of materials from which saw-tooth chips are produced.  相似文献   

10.
The “abc” deformation method for production of large-scale billets with submicrocrystalline structure was developed. A large billet of Ti–6Al–4V alloy (150-mm diameter × 200-mm length) with a homogeneous submicrocrystalline structure was produced. The refined structure with a grain/subgrain size of about 0.4 μm leads to a substantial mechanical properties improvement.  相似文献   

11.
The paper discusses processing and property aspects of oxide films formed on a Ti–6Al–4V alloy by AC plasma electrolytic oxidation (PEO) in aqueous solutions containing aluminate, phosphate, silicate and sulfate anions and some of their combinations. Structure, composition, mechanical tribological and corrosion resistant characteristics of the films formed are studied by SEM, XRD and microhardness analyses, and by scratch, impact, pin-on-disc friction and potentiodynamic corrosion testing. It is found that the films produced from the aluminate–phosphate electrolyte are dense and uniform and are composed mainly of Al2TiO5 and TiO2 phases of the rutile form. The films possess a beneficial combination of 50–60 μm thickness, 575 kg/mm2 hardness and high adhesion and provide a low wear rate (3.4×10−8 mm3/Nm) but a relatively high friction coefficient of μ=0.6–0.7 against steel, caused by material transfer from the counterface. A minimum friction coefficient of μ=0.18 is recorded during the testing of softer rutile–anatase films, 7 μm thick, produced from a phosphate electrolyte. Both of these types of film show good corrosion resistance in NaCl and physiological solutions, where the corrosion current is approximately 1.5 orders of magnitude lower than that of the uncoated substrate. SiO2/TiO2-based films with 70–90 μm thickness and high bulk porosity produced from silicate and silicate–aluminate electrolytes demonstrate better corrosion behaviour in H2SO4 solution, due to the greater chemical stability of the film phase components in this environment.  相似文献   

12.
13.
Conventional cutting fluid serves both as a coolant and lubricant. In cryogenic machining, liquid nitrogen (LN2) is recognized as an effective coolant due to its low temperature; however, its lubrication properties are not well known. The focus of this study was to investigate how the friction between the chip and the tool is affected by focused jetting LN2 to the cutting point in machining Ti–6Al–4V. Results of cutting force measurements indicated that the cold strengthening of titanium material increased the cutting force in cryogenic machining, but lower friction reduced the feed force. A mathematical model was developed to convert the measured 3D forces in oblique cutting into the normal and frictional force components on the tool rake face, and then to calculate the effective friction coefficient. It was found that the friction coefficient on the tool–chip interface was considerably reduced in cryogenic machining. Increased shear angle and decreased thickness of the secondary deformation zone, findings from a chip microstructure study, offer further evidence that friction is reduced.  相似文献   

14.
15.
Laser surface nitriding of Ti–6Al–4V alloy was carried out with a Nd:YAG pulsed laser. The microstructure and corrosion behaviour of the nitrided samples were examined, using SEM, XRD, XPS, and anodic polarization tests in 2 M HCl solution. Laser nitriding produced a thin continuous TiN layer followed by TiN dendrites and TiN0.3 needles. The laser nitrided specimen exhibited less corrosion current density, passivated more readily and also, maintained a lower current density over the duration of the experiment. This was correlated with the formation of very thin, continuous TiNxOy film, which could retard chloride ions ingress into the substrate.  相似文献   

16.
17.
Compound ceramic coatings prepared on Ti–6Al–4V alloy by pulsed bi-polar micro-plasma oxidation (MPO) in NaAlO2 solution were oxidized under different temperature in air. The phase composition and surface morphology of the coatings before and after oxidation were investigated by X-ray diffractometry and scanning electron microscopy, respectively. Meantime, the weight gains and the high temperature oxidation characteristics of the coated samples were investigated. The results show that the coatings prepared by MPO were composed of a large amount of Al2TiO5 and a little -Al2O3 and rutile TiO2. And the oxidation process of the coated samples included the decomposition of the Al2TiO5 in the coating, the oxidation of the substrate and the changes of the coating structure. After high temperature oxidation, the increase of -Al2O3 in the coating was due to the decomposition of Al2TiO5, whereas the increase of rutile TiO2 in the coating was attributable to both the decomposition of Al2TiO5 and the oxidation of the Ti substrate. The main crystalline of the coatings became rutile TiO2 after the oxidation of 1000 °C for 1 h. The decomposition of Al2TiO5 in the coating occurred at 900 and 1000 °C, and its half decomposition time was less than 1 h at 1000 °C. Increasing oxidation temperature or extending oxidation time, the weight gains of coated samples was increased to different extent. However, the weigh gains of the coated samples was much lower than that of the substrate, so the ceramic coatings improved the oxidation resistance of Ti alloy greatly under the experimental conditions.  相似文献   

18.
19.
The effect of iodate (IO3?), metavanadata (VO3?) and molybdate (MoO42?) anions on the passivation of Ti‐6Al‐4V alloy in sulfuric and hydrochloric acid solutions was studied using open‐circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS). The alloy surface was examined by scanning electron microscopy (SEM). It was found that an optimum concentration of the passivator is essential for the corrosion inhibition process. Above this concentration the rate of alloy corrosion decreases as the concentration of the passivating ion increases. Scanning electron micrographs have shown that the flawed regions present in the alloy surface were repaired in the presence of the passivator anion. The optimum concentration of each anion and its corrosion inhibition efficiency for titanium and Ti‐6Al‐4V alloy have been determined. It turned out that the corrosion inhibition efficiencies of IO3?, VO3? and MoO42? anions for the corrosion of Ti and Ti‐6Al‐4V in both hydrochloric and sulphuric acid solutions exceed 98%.  相似文献   

20.
In this paper the deposition of Ti–6Al–4V wire with High Power Diode Laser was investigated by producing single tracks. The effect of the wire feeding direction and angle was firstly studied. The influence of laser power, traverse speed and wire feed rate on the weight and dimension of the deposited single tracks was then investigated. The microstructure and hardness of the single tracks were examined. Deposition with diode laser and wire was proved to provide a high deposition rate with good quality. Columnar grains were found in the deposits. Wire feeding orientation, laser power, traverse speed and wire feed rate were verified as factors which influenced the quality of the deposit. With similar energy level, different power/traverse speed produced deposits with different hardness value. Hardness values tended to increase from the deposit, via the re-melted zone till to the heat affected zone, and then decrease again when the measurements were taken in the unaffected base material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号