首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An isogeometric finite element method based on non-uniform rational B-splines (NURBS) basis functions is developed for natural frequencies and buckling analysis of thin symmetrically laminated composite plates based upon the classical plate theory (CPT). The approximation of the solution space for the deflection field of the plate and the parameterization of the geometry are performed using NURBS-based approach. The essential boundary conditions are formulated separately from the discrete system equations by the aid of Lagrange multiplier method, while an orthogonal transformation technique is also applied to impose the essential boundary conditions in the discrete eigen-value equation. The accuracy and the efficiency of the proposed method are thus demonstrated through a series of numerical experiments of laminated composite plates with different boundary conditions, fiber orientations, lay-up number, eigen-modes, etc. The obtained numerical results are then compared with either the analytical solutions or other available numerical methods, and excellent agreements are found.  相似文献   

2.
Abstract

A mixed finite element scheme based on assumed local high‐order displacements is proposed for the free vibration of thick laminated plates. The effects of transverse shear deformation, transverse normal stress and rotary inertia are considered in the formulation. Cross‐ply laminates with simple supports and angle‐ply laminates with clamped edges are presented as examples. The three dimensional elasticity solutions of cross‐ply laminates with simple supports are used to assess the accuracy of the present scheme. The effects of the span‐to‐thickness, aspect and material anisotropy ratio on the fundamental natural frequency are investigated. The present results are compared with the results in the published literature, and agree closely with the 3‐D elasticity solutions.  相似文献   

3.
Abstract

A C° isoparametric higher‐order plate element is developed to analyze the free vibration of bimodulus laminated plates. The equations of motion for the higher‐order plate theory are also derived variationally. The natural frequencies and neutral surface locations are determined for benchmark problems. The numerical results are compared to available analytical solutions, and excellent agreement is observed. Obviously, the present formulation is more accurate than the first‐order theory.  相似文献   

4.
Two-dimensional axially moving materials have a wide range of industrial applications such as papers, plastics and composites in producing lines, power transmission and conveyor belts, etc. In many of these instances, the moving material is not isotropic, but is a single-layer orthotropic material or consists of several orthotropic layers.

In this article, free vibration of axially moving symmetrically laminated plates subjected to in-plan forces is studied by classical plate theory. This category includes symmetric cross-ply and angle-ply laminates and anisotropic plates. Firstly, an exact method is developed to analyze vibration of multi-span traveling cross-ply laminates, and then a semi-analytical finite strip method is extended for moving symmetric laminated plates in general, with arbitrary boundary conditions. By the finite strip method intermediate elastic or rigid supports can also be added to the model of the moving plate. The supports may be in the form of point, line or local distributed supports.  相似文献   


5.
A new method of state-space-based differential quadrature is presented for free vibration of generally laminated beams. By discretizing the state space formulations along the axial direction using the technique of differential quadrature, new state equations at discrete points are established. Applying end conditions and using matrix theory, the general solution is derived. Taking account of the boundary conditions at the top and bottom planes, frequency equation governing the free vibration of generally laminated beams is then formulated. The method is validated by comparing numerical results with that available in the literature.  相似文献   

6.
This paper presents a formulation for the analysis of free vibration in anisotropic structures using the boundary element method. The fundamental solution for elastostatic is used and the inertial terms are treated as body forces providing domain integrals. The dual reciprocity boundary element method is used to reduce domain integrals to boundary integrals. Mode shapes and natural frequencies for free vibration of orthotropic structures are obtained and compared with finite element results showing good agreement.  相似文献   

7.
In this study, free vibration of laminated skew plates was investigated. Discrete singular convolution (DSC) method is used for numerical solution of vibration problems. The straight‐sided quadrilateral domain is mapped into a square domain in the computational space using a four‐node element by using the geometric transformation. Typical results are presented for different geometric parameters and boundary conditions. It is concluded from the results that the skew angle have considerable influence on the variations of the frequencies with fibre orientation angle and number of layers in the laminate. The results obtained by DSC method are compared with those obtained by analytical and numerical approaches. It is shown that reasonable accurate results are obtained. Present work also indicates that the method of DSC is a promising and potential approach for computational mechanics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, layerwise (LW) theory has been utilized along with that of equivalent single layer (ESL) for free vibration and linearized buckling analysis of composite laminated plates. To this end, the isogeometric approach and Carrera unified formulation (CUF) have been combined. In particular, Taylor-like and Legendre-like polynomial expansions have been utilized in the framework of CUF to approximate the solution field in ESL and LW models, respectively. Indeed, CUF provides an ideal tool that facilitates the implementation of higher orders of the solution field expansion. As ESL model cannot inherently provide interlaminar continuity, they are not suitable for analyzing thick laminated plates. However, the LW model not only presents a three-dimensional (3D)-like accurate mathematical model using two-dimensionalplate theories but also considers interlaminar continuity requirements and obviates the need for the use of shear correction factor. In addition, the nonuniform rational B-spline basis functions have been employed to approximate the solution field, due to their interesting attributes in the analysis. These functions are able to describe the exact geometry of the structure and make it technically feasible to provide refinement process during analysis. The presented numerical results confirm the validity of the proposed methodology.  相似文献   

9.
This paper presents the free vibration analysis of thin isotropic and anisotropic rectangular plates with various boundary conditions by using the discrete singular convolution (DSC) algorithm. Based on Taylor's series expansion, a unique scheme is proposed to handle various boundary conditions, including the simply supported (S), clamped (C) and free (F) edge. To validate the proposed method, the non‐dimensional frequency parameters of isotropic, orthotropic and angle‐ply symmetric laminated rectangular plates with various combinations of boundary conditions are obtained by using the DSC algorithm and compared with the analytical and/or numerical solutions. Comparisons reveal that the proposed method can handle the zero bending moment and zero shear force conditions for the isotropic as well as anisotropic plates. The proposed method provides an alternative way for applying the simply supported boundary conditions in applications of the DSC algorithm to plate structures. This investigation extends the application range of the DSC algorithm to vibration analysis of anisotropic plates with various combinations of boundary conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Accurate free-vibrations and linearized buckling analysis of anisotropic laminated plates with different lamination schemes and simply supported boundary condition are addressed in this paper. Approximation methods, such as Rayleigh-Ritz, Galerkin and Generalized Galerkin, based on Principle of Virtual Displacement are derived in the framework of Carrera’s Unified Formulation (CUF). CUF widely used in the analysis of composite laminate beams, plates and shells, have been here formulated both for the same and different expansion orders, for the displacement components, in the thickness layer-plate direction. An extensive assessment of advanced and refined plate theories, which include Equivalent single Layer (ESL), Zig-Zag (ZZ) and Layer-wise (LW) models, with increasing number of displacement variables is provided. Accuracy of the results is shown to increase by refining the theories. Convergence studies are made in order to demonstrate that accurate results are obtained examining thin and thick plates using trigonometric approximation functions. The effects of boundary terms, upon frequency parameters and critical loads are evaluated. The effects of the various parameters (material, number of layers, fiber orientation, thickness ratio, orthotropic ratio) upon the frequencies and critical loads are discussed as well. Numerical results are compared with 3D exact solution when available from the open literature.  相似文献   

11.
Postbuckling responses of laminated thin plates supported by a tensionless foundation and subjected to in-plane compressive edge loads are investigated. The postbuckling analysis presented here is based on the classical laminated plate theory, and includes the plate-foundation interaction, for which the foundation reacts in compression only. The plate is assumed to be simply supported at four edges, while the two longitudinal unloaded edges may be either movable or immovable. The initial geometric imperfection of the plate is taken into account. The analysis uses a two step perturbation technique to determine the postbuckling response of the plate. An iterative scheme is developed to obtain numerical results without any prior assumption for the shape of the contact region. The numerical examples concern the postbuckling behavior of antisymmetric angle-ply and symmetric cross-ply laminated plates with unilateral constraints, from which results for the same unconstrained plates are obtained as comparators. The numerical results show that the unilateral constraint has a significant effect on the postbuckling response of laminated thin plates.  相似文献   

12.
A mathematical apparatus is developed for the analysis of the three-dimensional stress–strain state with small deflections of laminated orthotropic plates of any thickness and non-symmetrical layer structure through the thickness. This theory is based on the representation of the displacement vector in terms of products of the given functions in the direction of the axes x1, x2 and the unknown functions over the axis x3. Both the real and complex roots of the characteristic equation describing the representation of the sought functions through the thickness of the plate are taken into account. Such an approach allows us to expand the scope of physical and mechanical relationships among the material characteristics.  相似文献   

13.
In this paper, the free vibration characteristics of laminated composite cylindrical and spherical shells are analyzed by the first-order shear deformation theory and a meshless global collocation method based on thin plate spline radial basis function. The singularity of thin plate spline radial basis function is eliminated by adding infinitesimal to the zero distance. Several numerical examples are used to show convergence of the present method and choose the proper shape parameter. It is found that the natural frequencies computed by thin plate spline radial basis function with shape parameter = 4 converge most rapidly. In the comparison study, the present results are in good agreement with the results of Reddy and Liu [8] and Ferreira et al. [21].  相似文献   

14.
The new improved discrete Kirchhoff quadrilateral element based on the third-order zigzag theory developed earlier by the present authors for the static analysis of composite and sandwich plates is extended for dynamics and assessed for its performance for the free vibration response. The element is free from the shear locking. The finite element formulation is validated by comparing the results for simply supported plates with the analytical Navier solution of the zigzag theory. Comparison of the present results for the natural frequencies with those of a recently developed triangular element based on the zigzag theory, for composite and sandwich plates, establishes the superiority of the present element in respect of simplicity, accuracy and computational efficiency. The accuracy of the zigzag theory is assessed for composite and sandwich plates with various boundary conditions and aspect ratio by comparing the finite element results with the 3D elasticity analytical and finite element solutions.  相似文献   

15.
彭林欣 《振动与冲击》2011,30(8):275-281
提出了一种求解对称层合折板结构自由振动问题的移动最小二乘无网格法。以作者提出的折板无网格模型为基础,将对称层合折板结构视为由不同平面上对称层合板组成的复合结构。先基于一阶剪切变形理论,由移动最小二乘近似推导出各对称层合板的刚度和质量矩阵,再利用板与板间的位移协调条件,将各板的刚度和质量矩阵叠加得到整个结构的刚度和质量矩阵,推导出描述层合折板结构自由振动行为的控制方程。文末算例表明由本文方法得到的解与采用壳单元得到的ANSYS有限元解吻合良好,证明了本文方法的准确性。  相似文献   

16.
Abstract

The main objective of this study is to perform the free and forced vibration analysis of transversely isotropic and laminated composite parabolic arches with a continuous cross-section variation. The anisotropy of the material of the arch, effects of the rotary inertia, and shear deformations are considered. An efficient unified numerical procedure of the Complementary Functions Method and Laplace transform is applied to solve the strong form of the differential equations that govern the dynamic response of the above structures. The validity and the accuracy of the presented scheme are tested by means of several comparisons with available literature and results of ANSYS. The presented approach has proven to be an accurate and stable numerical method. It is believed that derived results can be used as benchmark solutions for validation of related works in the future.  相似文献   

17.
The layerwise theory of Reddy is used to study the low velocity impact response of laminated plates. Forced-vibration analysis is developed by the modal superposition technique. Six different models are introduced for representation of the impact pressure distribution. The first five models, in which the contact area is assumed to be known, result in a nonlinear integral equation similar to the one obtained by Timoshenko in 1913. The resulting nonlinear integral equation is discretised using a time-element scheme. Two different interpolation functions, namely: (i) Lagrangian and (ii) Hermite, are used to express the impact force. The Hermitian polynomial-based representation, obviously more sophisticated, is introduced to verify the Lagrangian-based representation. Due to its modular nature the present numerical technique is preferable to the existing numerical methods in the literature. The final loading model, in which the time dependence of the contact area is taken into account according to the Hertzian contact law, resulted in a relatively more complicated but more realistic, nonlinear integral equation. The analytical developments concerning this model are all new and are reported for the first time in this paper. Also a simple, but accurate, numerical technique is developed for solving our new nonlinear integral equation which results in the time-history of the impact force. Our numerical results are first tested with a series of existing example problems. Then a detailed study concerning all the response quantities, including the in-plane and interlaminar stresses, is carried out for symmetric and antisymmetric cross-ply laminates and important conclusions are reached concerning the usefulness and accuracy of the various plate theories. This paper, presented at a symposium to celebrate the Golden Jubilee of the Aerospace Department, Indian Institute of Science, Bangalore first appeared as a paper inComputational Mechanics (1994) 13: 360–379  相似文献   

18.
Various theories of homogeneous laminated plates are extended to study the buckling and free vibration behavior of non-homogeneous rectangular composite laminates. The equations governing the dynamic response of non-homogeneous composite laminates are deduced. Numerical results for the natural frequencies and critical buckling loads of symmetric cross-ply laminates are presented. The influences of the degree of non-homogeneity, aspect ratio, thickness ratio and in-plane orthotropy ratio on the natural frequencies and critical buckling loads are investigated. The results obtained for homogeneous cases are compared with their counterparts in the literature. The study concludes that the classical plate theory is inadequate for predicting the structural response of non-homogeneous laminates, and that the free vibration and the state of the stability are affected strongly by the degree of nonhomogeneity.  相似文献   

19.
The free vibration of composite truss core sandwich plates is investigated. The natural frequencies of the sandwich plate are calculated by using the classic laminated plate theory, the first-order shear deformation theory, Reddy's third-order shear deformation theory, and a Zig-Zag theory. The differences between the natural frequencies, obtained from the four theories, are compared. The influences of structural parameters on the natural frequencies and the ratios of natural frequency to equivalent density of the sandwich plates with pyramidal core, tetrahedral core, and 3D-Kagome core are studied with the aid of the Zig-Zag theory.  相似文献   

20.
The active aeroelastic flutter analysis and vibration control at the flutter bounds of the supersonic composite laminated plates with the piezoelectric patches are studied. The piezoelectric patches are bonded on the top and bottom surfaces of the composite laminated plate to act as the sensor and actuator so that the active aeroelastic flutter suppression and vibration control for the supersonic laminated plate can be conducted. The unsteady aerodynamic pressure in supersonic flow is computed by using the supersonic piston theory. Hamilton’s principle with the assumed mode method is used to develop the governing equation of the structural system. The controller is designed by the velocity feedback and proportional feedback control algorithm, and the active damping and stiffness are obtained. The solutions for the complex eigenvalue problem are obtained by using the generalized eigenvalue methodology. The natural frequencies and damping ratios are also gotten. The aeroelastic flutter bounds of the supersonic composite laminated plate are calculated to investigate the characteristics of the aeroelastic flutter. The impulse responses of the structural system are calculated by using the Houbolt numerical algorithm to study the active aeroelastic vibration control. The influences of ply angle of the laminated plate and the control method on the characteristic of flutter and active vibration control are analyzed. From the numerical results it is observed that the aeroelastic flutter characteristics of the supersonic composite laminated plate can be improved and that the aeroelastic vibration response amplitudes can be reduced, especially at the flutter points, by the proportional feedback or the velocity feedback control algorithm using the piezoelectric actuator/sensor pairs. The effectiveness of the flutter control by the two control algorithms is also compared. The results of this study are of great significance to the flutter analysis and aeroelastic design of the aircraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号