共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
一种基于改进重采样的粒子滤波算法 总被引:2,自引:0,他引:2
针对传统粒子滤波算法中存在的样本贫化问题,提出一种基于改进重采样的粒子滤波算法。为了验证算法的有效性,对机动目标跟踪和分时恒值估计两类问题进行了仿真。结果表明,所提出的算法能够解决样本贫化问题,且具有较小的估计误差和较短的运算耗时。 相似文献
3.
4.
为了解决粒子滤波在粒子数量较少时估计精度不高的问题,提出了一种基于Metropolis-Hastings(MH)变异的粒子群优化粒子滤波算法。该算法将Metropolis-Hastings(MH)移动作为粒子群优化的变异算子,通过将MH变异规则与粒子群的速度-位置搜索过程相结合,使得重采样后的粒子群更接近真实的后验概率密度分布,有效解决了一般的变异粒子群算法容易发散的问题,加快了粒子滤波在序贯估计过程中的收敛速度,提高了其估计精度。仿真试验证明,基于MH变异的粒子群优化粒子滤波算法可以有效地克服粒子贫化现象,改善对非线性系统的跟踪估计效果。 相似文献
5.
粒子滤波算法由于其处理非线性非高斯的能力优势,目前应用领域非常广泛。然而粒子滤波中存在的粒子退化、样贫等问题同样不容忽视,针对这些问题提出了一种改进的重采样粒子滤波算法。该方法借鉴了部分分层重采样和残差重采样的思路,通过对粒子权值大中小分类,在兼顾粒子多样性的情况下用不同策略分层次复制三个集合样本,从而优化了重采样算法。最后通过与经典粒子滤波重采样算法和其他部分重采样(PR)算法相比,以一维非线性跟踪模(UNG)和二维纯角度跟踪模型(BOT)两个模型的仿真结果验证了所提算法的滤波性能和有效性。 相似文献
6.
针对粒子滤波中如何设计重采样策略以解决“权值蜕化”,同时又可避免“样本贫化”的问题,提出一种基于分层转移的Monte Carlo Markov链(MCMC)重采样算法.当样本容量检测出现“蜕化”时,将样本集按权值蜕化程度进行分层,利用提出的变异繁殖算法,将其与PSO融合产生MCMC转移核,并施以分层子集;然后通过Metroplis—Hastings算法进行接收-拒绝采样,由此构建的Markov链可收敛到与目标真实后验等价的平稳分布.数值仿真结果表明,所提出的算法能以更快的收敛速度和更小的估计误差贴近目标真实后验,从而提高了估计精度. 相似文献
7.
基于硬件实现的粒子滤波重采样算法研究 总被引:1,自引:0,他引:1
粒子滤波算法用于硬件实现是目前一个新的研究方向,传统的粒子滤波算法计算量大,所需存储空间大,实时性差,所以在硬件实现方面面临着极大的挑战。为使算法更加适合于硬件实现,以粒子滤波中的重采样步骤为研究重点,以典型的序贯重要性重采样滤波算法为例,对典型的几种重采样算法的复杂度、所需存储空间及执行时间上进行分析研究,并在TI DSPTMS320C5402上对采样算法进行仿真,结果表明部分重采样算法(PDR)更适合于硬件实现。 相似文献
8.
改进重采样粒子滤波算法在GPS中的应用 总被引:1,自引:0,他引:1
为解决粒子滤波(PF)固有的退化现象及因简单重采样引起的粒子匮乏问题,采用扩展卡尔曼滤波(EKF)来优选PF的重要性分布,并对重采样方法进行改进.通过理论分析及针对全球定位系统(GPS)的计算机仿真,对比扩展卡尔曼滤波(EKF)、扩展卡尔曼粒子滤波(EKPF)以及改进的EKPF算法来实现导航定位的定位估计精度与效率,分析在不同条件状况下的最佳非线性滤波算法.实验结果表明,与其它方法相比,该算法在高动态,高机动状态下性能得到了明显的改善. 相似文献
9.
基于目标跟踪的粒子滤波重采样算法研究 总被引:3,自引:0,他引:3
传统粒子滤波(PF)中,重采样步骤里存在着粒子的"平均化"现象,导致粒子本身概率大小的因素被忽略,没有充分利用粒子集所包含的信息。通过改进抛弃小权值粒子的原则,以及充分利用粒子权值大小所代表的意义来进行粒子复制的两点进行算法改进,采用一维非线性目标跟踪模型和新的二维动态跟踪模型分别研究改进PF算法对于平均RMSE的影响。通过仿真,证明了改进后的算法可以显著降低变量的平均RMSE,特别是在二位动态跟踪模型中,使位置坐标和速度两种变量的平均均方根误差(RMSE)都有所改善,从而提高了滤波性能。 相似文献
10.
11.
从研究分析粒子群算法和郭涛算法的特点出发,提出一种综合两算法优点的混合算法。新算法改变了粒子的更新方式,以子空间搜索和串行搜索相结合的多点并行搜索,扩大了算法的搜索范围,减少了粒子对初值的依赖,增强了算法跳出局部最优的能力;通过后代较优个体变异产生子群,提高了算法局部寻优能力;实验证明,该算法正确高效。 相似文献
12.
针对基于粒子群优化算法的粒子滤波(PSO-PF)算法精度不高,容易陷入局部最优,难以满足电厂温控系统故障诊断的需求,提出一种适用于故障诊断的新型粒子群优化粒子滤波(NPSO-PF)算法。该算法引入社会个体对群体的认知规律优化了粒子更新的方式,并且完善了粒子速度的更新策略,对优势速度赋有较小概率的变异,提高了粒子的寻优能力,同时随机初始化劣势速度,保证了样本的多样性。实验结果表明,与PSO-PF相比,NPSO-PF提高了故障检测的精度和鲁棒性,可以有效地应用于温控系统故障的诊断。 相似文献
13.
为了实现在高相似度环境中移动机器人精确高效的自定位与建图,提出了一种基于粒子群优化( PSO)的Rao-Blackwellized粒子滤波同步定位与地图构建( SLAM)算法。利用激光扫描数据校正里程计信息,得到多模态的似然函数,克服相似环境对机器人定位的影响;利用粒子群优化算法提高常规粒子滤波器的估计性能,使得高似然采样集向各个后验概率密度分布取值极大的区域运动,同时保持低似然粒子多样性,从而在一定程度上克服粒子贫乏问题,并且显著地降低精确定位所需的粒子数。对所提算法与Gmapping算法在MIT数据集上进行仿真对比实验,结果表明了该算法的可行性和有效性。 相似文献
14.
为了保持粒子种群的多样性而避免发生“早熟”的问题,提出一种基于差异演化变异的粒子群优化算法(PSO),该方法通过粒子聚集性判断如果粒子群中的粒子过于聚集,则使用差异演化算法对PSO算法中各个粒子的自身历史最佳位置进行变异,以实现保持粒子群种群多样性的目的。对4种常用函数的优化问题进行测试并进行比较,结果表明:所改进的粒子群优化算法比标准粒子群优化算法更容易找到全局最优解,优化效率和优化性能明显提高。 相似文献
15.
针对粒子群优化(PSO)算法容易陷入局部最优、收敛精度不高、收敛速度较慢的问题,提出一种基于分层自主学习的改进粒子群优化(HCPSO)算法。首先,根据粒子适应度值和迭代次数将种群动态地划分为三个不同阶层;然后,根据不同阶层粒子特性,分别采用局部学习模型、标准学习模型以及全局学习模型,增加粒子多样性,反映出个体差异的认知对算法性能的影响,提高算法的收敛速度和收敛精度;最后,将HCPSO算法与PSO算法、自适应多子群粒子群优化(PSO-SMS)算法以及动态多子群粒子群优化(DMS-PSO)算法分别在6个典型的测试函数上进行对比仿真实验。仿真结果表明,HCPSO算法的收敛速度和收敛精度相对给出的对比算法均有明显提升,并且算法执行时间和基本PSO算法执行时间差距在0.001量级内,在不增加算法复杂度的情况下算法性能更高。 相似文献
16.
基于交叉和变异的多目标粒子群算法 总被引:2,自引:0,他引:2
为了保证粒子群算法求得的非劣解尽可能接近真实的Pareto前沿并保持多样性分布. 提出一种基于交叉和变异的多目标粒子群算法(CMMOPSO). 在CMMOPSO算法中, 首先, 识别Pareto前沿的稀疏部分包含的粒子, 并对这些粒子进行交叉操作以增加多样性分布; 其次, 对于远离Pareto前沿的粒子进行变异操作, 以提升粒子向真实的Pareto前沿飞行的概率. 在基准函数的测试中, 结果显示CMMOPSO算法比其它算法有更好的运行效果. 因此, CMMOPSO算法可以作为求解多目标问题的一种有效算法. 相似文献
17.
深入分析了排课问题,提出一种基于离散粒子群的排课算法,构建了相应的解题框架。针对粒子群算法有后期收敛速度慢、易收敛于局部最优的缺点,结合排课问题的特点,对粒子群算法作了改进。在三维空间中建立模型,采用避免冲突的种群初始化加快收敛,并且引入变异操作避免陷入局部最优等。实践表明改进后的粒子群算法能有效地解决排课问题。 相似文献
18.
变异测试是常用的测试方法之一,变异测试分析的过程中计算开销会比较大,问题主要集中于测试过程中会产生大量的变异体,为了减少变异体的数量,提出用标准粒子群聚类算法进行选择优化,但标准粒子群算法在被测数据量增加到一定数量的时候,它的迭代次数就会增加、收敛速度就会下降。针对以上问题提出基于改进的粒子群算法对变异体进行选择优化。通过对变异体集合进行聚类分区,增强变异体集合的多态性,从而对粒子群算法改进优化。实验结果表明在不影响测试充分度的前提下,使变异体的数量大幅度减少,同时与K-means算法以及标准粒子群算法相比之下,改进后的方法具有更好的优化效果。 相似文献
19.
针对基本粒子群优化(PSO)算法收敛精度低、容易陷入局部最优的问题,提出了一个结合质心思想和柯西变异策略的粒子群优化算法。首先,在粒子的初始化阶段采用混沌初始化策略,以提高初始粒子的均匀分布能力;其次,为了提高粒子群的收敛速度和寻优能力,引入了质心的概念,通过计算获得种群中所有粒子所构成的全局质心和所有个体极值构成的个体质心,使得粒子群内部可以实现充分的信息共享;为避免粒子陷入局部最优解,在粒子群算法中引入了柯西变异运算对当前最优粒子进行扰动,并依据柯西变异运算的规律,适应性地调整扰动步长,该算法以群体多样性为依据,动态调整惯性权重;最后,使用7个经典的测试函数对算法进行验证,通过函数运行结果的均值、方差和最小值能够表明,新算法在收敛精度上有较好的优越性。 相似文献
20.
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。 相似文献