首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Lead-free (1-x)K0.49Na0.51NbO3-xLiNbO3 (KNN-LN, x = 0 ~ 0.08) piezoelectric ceramics were prepared by the conventional solid-state sintering method. The effects of LiNbO3 doping amount x on the phase transition behavior and the electrical properties of KNN-LN ceramics were investigated. By increasing LiNbO3 doping amount x, the orthorhombic-tetragonal polymorphic phase transition (PPT) temperature (T o–t) of KNN-LN ceramics shifted downwards, however, the Curie temperature (T c) slightly moved upwards. The room temperature phase structure thus changed from orthorhombic to tetragonal across the compositions with 0.05 ≤ x ≤ 0.06, named as PPT region. The composition with x = 0.06 in the tetragonal side of PPT region exhibited optimized electrical properties of d 33 = 246pC/N, k p = 41.6%, ε r = 679, tgδ = 0.028, and Q m = 52. In addition to its very high T c = 467 °C, this ceramic can be an excellent candidate for replacing the lead-based piezoceramics in high temperature applications.  相似文献   

2.
K0.5Na0.5NbO3x ZnO (KNN–xZn) lead-free ceramics have been prepared using the conventional sintering technique and the effects of ZnO addition on the phase structure and piezoelectric properties of the ceramics have been studied. Our results reveal that a small amount of ZnO can improve the density of the ceramics effectively. Because of the high density and ZnO doping effects, the piezoelectric and dielectric properties of the ceramics are improved considerably. The good piezoelectric and dielectric properties of d 33 = 114 pC/N, k p = 0.36, ε r = 395, and Q m = 68 were obtained for the KNN ceramics doped with 1 mol% ZnO. Therefore, the KNN-1.0 mol%Zn ceramics is a good candidate for lead-free piezoelectric application.  相似文献   

3.
CeO2-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics have been fabricated by a conventional ceramic fabrication technique. The ceramics retain the orthorhombic perovskite structure at low doping levels (<1 mol.%). Our results also demonstrate that the Ce-doping can suppress the grain growth, promote the densification, decrease the ferroelectric–paraelectric phase transition temperature (T C), and improve the dielectric and piezoelectric properties. For the ceramic doped with 0.75 mol.% CeO2, the dielectric and piezoelectric properties become optimum: piezoelectric coefficient d 33 = 130 pC/N, planar electromechanical coupling coefficient k p = 0.38, relative permittivity εr = 820, and loss tangent tanδ = 3%.  相似文献   

4.
Perovskite lead-free piezoelectric ceramics Bi0.5Na0.5TiO3, modified with yttrium and manganese to form a new compound, (1 − x) Bi0.5Na0.5TiO3xYMnO3 (BNT-YM100x) with x = 0–1.2 mol%, was synthesized by a conventional solid-state reaction method. The effect of YMnO3 on crystal structure, dielectric and piezoelectric properties was investigated. X-ray diffraction analysis shows that the materials have a single phase perovskite structure with rhombohedral symmetry. Addition of small amount of YMnO3 improves piezoelectric properties and the optimal piezoelectric properties of d 33 = 115 pC/N, k p = 0.207 and Q m = 260 were obtained at 0.9% YMnO3 addition. The loss tangent tanδ is approximately constant while Curie temperature decreases with increasing YMnO3 concentration.  相似文献   

5.
Lead-free MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 ceramics have been fabricated by a conventional ceramic technique and their dielectric and piezoelectric properties have been studied. Our results show that a small amount of MnO2 (0.5–1.0 mol%) is enough to improve the densification of the ceramics and decrease the sintering temperature of the ceramics. The co-effects of MnO2 doping and Sb-substitution lead to significant improvements in the ferroelectric and piezoelectric properties. The K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping possesses optimum propeties: d 33 = 187 pC/N, k P = 47.2%, ε r = 980, tanδ = 2.71% and T c = 287 °C. Due to high tetragonal-orthorhombic phase transition temperature (T O-T ~ 150 °C), the K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping exhibits a good thermal stability of piezoelectric properties.  相似文献   

6.
BaTi1−x Co x O3−δ (0.01 ≤ x ≤ 0.4) ceramics were prepared by a wet chemical process polymerized with polyvinyl alcohol. The phases and related electrical properties of the ceramics were investigated. The phase component of the ceramics changes from a tetragonal phase to a hexagonal one with the Co concentration increase. A pure hexagonal phase formed in the ceramic with x = 0.2. The measurement of the temperature dependence of resistances revealed that the ceramic resistivities increase with temperature rising at the temperatures (T) lower than half of the related Debye temperature (ΘD), and the ceramics show a negative temperature coefficient (NTC) effect at T > ΘD/2. The material constants B 50/120 of the BaTi1−x Co x O3−δ NTC thermistors were calculated to be 3,187, 2,968 and 2,648 K for x = 0.2, 0.3 and 0.4, respectively. Narrow-band conduction and non-adiabatic hopping models are proposed for the conduction mechanisms at T < ΘD/2 and T > ΘD/2, respectively.  相似文献   

7.
Ca4-xMgxLa2Ti5O17 ceramics were prepared by a solid state ceramic route for x = 0, 0.5, 1, 2, 3 and 4. The structure and microstructure of the ceramics were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction results show that the Ca4-x Mg x La2Ti5O17 adopts an orthorhombic crystal structure with no secondary phase observed for x from 0 to 0.5. Secondary phase, MgTiO3 occurs with further increasing doping level (1 ≤ x ≤ 3). When x = 4, mixture phases La0.66TiO2.993, MgTiO3 and a trace of unknown phase coexist. Ca4La2Ti5O17 ceramic exhibits a relative permittivity (εr) ~ 65, quality factor (Q × f) ~13,338 GHz (at ~4.75 GHz), and temperature coefficient of resonant frequency (τ f ) ~ 165 ppm/°C. The sintering temperature was distinctly reduced from 1,580 °C for x = 0 to 1,350 °C for x = 4. With increasing Mg content, εr and τf obviously decrease, while Q × f value initially decreases and then increases. The ceramic for x = 2 shows εr ~ 50, Q × f ~ 9,451 and τ f  ~ 62.5 ppm/°C. By the complete replacement of Ca with Mg, Mg4La2Ti5O17 ceramic sintered at 1,350 °C for 4 h combines a high dielectric permittivity (ε r  = 31), high quality factor (Q × f ~ 15,021) and near-zero temperature coefficient of resonant frequency (τ f  ~ 4.0 ppm/°C). The materials are suitable for microwave applications.  相似文献   

8.
New ternary (1−x)K0.5Na0.5NbO3x(0.80LiSbO3–0.20CaTiO3) lead-free ceramics were fabricated by a conventional ceramic technique and their structure and piezoelectric properties were studied. The results of X-ray diffraction reveal that LiSbO3 and CaTiO3 diffuse into the K0.5Na0.5NbO3 lattices to form a new solid solution with a perovskite structure. After the addition of LiSbO3 and CaTiO3, the cubic-tetragonal and tetragonal-orthorhombic phase transitions shift to lower temperatures. Coexistence of the orthorhombic and tetragonal phases is hence formed in the ceramics with 0.03 < x < 0.07 at room temperature, leading to a significant enhancement of the piezoelectric properties. For the ceramics with x = 0.04–0.06, the piezoelectric properties become optimum: d 33 = 172–253 pC/N, k P = 49.9–55.5%, k t = 49.2–52.1% and T C = 348–373 °C. The ceramic with x = 0.04 also exhibits a good thermal stability of piezoelectric properties.  相似文献   

9.
Bismuth-layered compound Ca0.15Sr1.85Bi4−xNdxTi5O18 (CSBNT, x = 0–0.25) ferroelectric ceramics samples were prepared by solid-state reaction method. The effects of Nd3+ doping on their ferroelectric and dielectric properties were investigated. The remnant polarization Pr of CSBNT ceramics increases at beginning then decreases with increasing of Nd3+ doping level, and a maximum Pr value of 9.6 μC/cm2 at x = 0.05 was detected with a coercive field Ec = 80.2 kV/cm. Nd3+ dopant not only decreases the Curie temperature linearly, but also the dielectric constant (εr) and dielectric loss tangent (tan δ). The magnitudes of εr and tan δ at the frequency of 100 kHz are estimated to be 164 and 0.0083 at room temperature, respectively.  相似文献   

10.
New dielectric ceramics in the SrLa4−xSmxTi5O17 (0 ≤ x ≤ 4) composition series were prepared through a solid state mixed oxide route to investigate the effect of Sm+3 substitution for La+3 on the phase, microstructure and microwave dielectric properties. At x = 0–3, all the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1500–1580 °C. At x = 4, a mixture of Sm2Ti2O7 and SrTiO3 formed. The maximum Sm+3-containing single phase ceramics, SrLaSm3Ti5O17, exhibited relative permittivity (εr) = 42.6, temperature coefficient of resonant frequency (τ f ) = −96 ppm/oC and quality factor (Q u f o ) = 7332 GHz. An analysis of results presented here indicates that SrLa4−xSmxTi5O17 ceramics, exhibiting τ f  ~ 0 and εr ~ 53 could be achieved at x ~ 1.4 but at the cost of decrease in Q u f o .  相似文献   

11.
The effect of B2O3 addition on the superconducting transition and grain boundary critical current density of the boron free (control) and boron doped HTS ceramics with nominal composition YBa2Cu3B x O7−y (x=0, 0.025, 0.05, 0.075, 0.1 and 0.15) has been investigated. For the lowest-level boron doping (x=0.025) an increase by nearly 1.5 times was observed in the critical current density J c compared to the control sample. The small additives of boron in YBa2Cu3B x O7−y (x=0.025 and 0.05) do not essentially affect the critical temperature T c =92.5 K of nominally pure Y123. Higher-level boron added compounds revealed a decrease in both T c and J c values. The data obtained indicate the possibility of boron dopant being inserted either into interstitial or into substitutional sites of the lattice.  相似文献   

12.
Ternary oxides containing Sn2+ are rare and difficult to prepare by the conventional solid state reactions due to the disproportionation of Sn2+ to Sn4+ and Sn at high temperatures. In this article, Sn2+-doped barium titanate, Ba1−x Sn x TiO3 (x = 0.00, 0.02, 0.05, and 0.10) nanopowders were successfully synthesized at a moderate temperature by a microwave-assisted solvothermal reaction (MSR) and a solvothermal reaction with rolling (SRR). The powders obtained using the MSR and SRR consisted of nanoparticles of 20–50 nm and 100–120 nm in diameter, respectively. The dielectric constant of the sample increased by doping with a small amount of Sn2+ (x ≤ 0.05), but decreased by doping in excess amounts of it.  相似文献   

13.
Electron magnetic resonance (EMR), neutron powder diffraction (NPD) and ac susceptibility techniques were employed for studying the crystallographic structure and magnetic ordering in CaMn1−xRuxO3 (x ≤ 0.40) manganite system. EMR measurements were done on polycrystalline samples at 120 ≤ T ≤ 500 K. High temperature EMR spectra of pristine antiferromagnetic (AFM) CaMnO3 show a singlet Lorentzian-like line, whose intensity diminishes, zeroing at Neel temperature T N=120 K. Strong broadening of paramagnetic (PM) lines with increase of Ru-content (Δ Hpp ∼ 1 T for x=0.10) was found. Upon cooling low-doped (x ≤ 0.06) samples remain AFM, whereas higher doped ones (0.10 ≤ x ≤ 0.40) clearly show progressive appearance of ferromagnetic (FM) phases. Thus, EMR evidences that Ru-doping modifies both PM and AFM states and creates an inhomogeneous phase separated FM and AFM ground states at x0.06. Complementary measurements of NPD and ac susceptibility corroborate the complex character of magnetic ordering, revealed by EMR. The changes of the magnetic ordering in CaMn1−xRuxO3 supposed to be solely determined by doping of Mn-sites with Ru.  相似文献   

14.
Multiferroic ceramic samples of Bi1−x Gd x FeO3 (x=0, 0.05, 0.1 and 0.15) have been prepared by rapid liquid-phase sintering technique. The effect of Gd substitution on ferroelectric and magnetic properties of Bi1−x Gd x FeO3 ceramics has been investigated. The results of X-ray diffraction (XRD) patterns show that the single-phase BiFeO3 sample has a rhombohedral structure and Gd3+ substitution for Bi3+ has not affected its structure. Experimental results suggest that for Bi1−x Gd x FeO3 system, the ferroelectric and magnetic properties of BiFeO3 are improved by Gd doping and the loop area increases with the Gd content. When x=0.15, saturated ferroelectric hysteresis loop is observed at room temperature with the maximal 2Pr=1.62 μC/cm2, which is about 578.6% higher than that of BiFeO3.  相似文献   

15.
Samples of xBiFeO3–(1 − x)BaTiO3 (x = 0, 0.02, 0.04, 0.06, 0.07 and 0.08) were synthesized by solid state reaction technique and sintered in air in the temperature range 1,220–1,280 °C for 4 h. X-ray diffraction data showed that 2–8 mol% BiFeO3 can dissolve into the lattice of BaTiO3 and form single perovskite phase. The crystal structure changes from tetragonal to cubic phase at room temperature when 8 mol% of BiFeO3 was added into BaTiO3. Scanning electron microscope images indicated that the ceramics have compact and uniform microstructures, and the grain size of the ceramics decreases with the increase of BiFeO3 content. Dielectric constants were measured as functions of temperatures (25–200 °C). With rising addition of BiFeO3, the Curie temperature decreases. For the sample with x = 0.08, the phase transition occurred below room temperature. The boundary between tetragonal and cubic phase of the BiFeO3–BaTiO3 system at room temperature locates at a composition between 7 and 8 mol% of BiFeO3. The diffusivity parameter γ for compositions x = 0.02 and x = 0.07 is 1.21 and 1.29, respectively. The relaxor-like behaviour is enhanced by the BiFeO3 addition.  相似文献   

16.
Phase transition and electrical properties were demonstrated for a Li-modified Bi0.5Na0.5TiO3-based solid solution. (0.935 − x)Bi0.5Na0.5TiO− xBi0.5Li0.5TiO− 0.065BaTiO3 with 0.5 mol% Mn doping was prepared by a conventional solid state reaction method. Close inspection of X-ray diffraction patterns indicated that no characteristic peaks splitting happened, indicating the pseudocubic structure for all the compositions. At a critical composition x of 0.06, optimized performance was obtained with piezoelectric constant d 33 of 176 pC/N, electromechanical coupling factors k P of 0.33, and k t of 0.52, respectively. In addition, it was found that the Li substitution could lead to a disruption of long-range ferroelectric order and obtain enhanced frequency dispersion behavior accompanied with the decreasing of the depolarization temperature T d, which was responsible for the observed weaker ferroelectric polarization and electromechanical response. The composition induced structure evolution was also discussed combined with the Raman spectroscopy.  相似文献   

17.
β-In2−x Al x S3 thin films have been grown on glass substrate by chemical bath deposition for different value of Al concentration y = (([Al])/([In]))sol (0 ≤ y ≤ 5 at.%). Samples have been characterized using X-ray diffraction, atomic force microscopy and by spectrophotometric measurements. The influence of the increase of y ratio in the structural and optical properties are described and discussed in terms of crystallinity improvement. In order to increase film thickness of β-In2−x Al x S3, we have been realized multi-deposition system. The structural, the surface morphology as well as the optical properties seem to be improved as the film thickness is of about 1200 nm.  相似文献   

18.
Single domain GdBa2Cu7-δ (Gd123) bulk superconductors were fabricated in air by top-seeding melt-texture growth. Performance of the air-processed Gd123 was successfully enhanced by addition of both BaCO3 and BaCuO2−x , which suppress the formation of Gd1+x Ba2−x Cu3O7-δ solid solutions. The optimum doping amount ranges from 0.05 to 0.15, M BaCO3 and 0.05 to 0.1, M BaCuO2−x per molar Gd123. The distribution of the second phase particles was observed by scanning electron microscopy. A narrow band formed by Gd2BaCuO5 particle concentration appeared around the seeding zone in both ab plane and c-growth sector in Gd123 single grain. Trapped magnetic field density reached 0.67, T for sample with 24 mm in diameter and 8, mm in thickness and a high critical current density J c up to 91,200, A/cm2 was achieved at 77, K under self-field.  相似文献   

19.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

20.
Phase purity, microstructure, sinterability and microwave dielectric properties of BaCu(B2O5)-added Li2ZnTi3O8 ceramics and their cofireability with Ag electrode were investigated. A small amount of BaCu (B2O5) can effectively reduce the sintering temperature from 1075°C to 925°C, and it does not induce much degradation of the microwave dielectric properties. Microwave dielectric properties of ε r = 23·1, Q × f = 22,732 GHz and τ f = − 17·6 ppm/°C were obtained for Li2ZnTi3O8 ceramic with 1·5 wt% BaCu(B2O5) sintered at 925°C for 4 h. The Li2ZnTi3O8 +BCB ceramics can be compatible with Ag electrode, which makes it a promising microwave dielectric material for low-temperature co-fired ceramic technology application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号