共查询到20条相似文献,搜索用时 15 毫秒
1.
基于径向基函数神经网络的红外步态识别 总被引:1,自引:0,他引:1
为提高红外步态识别的效果,提出一种基于径向基函数神经网络的多分类器融合算法。对红外步态序列,分别应用基于轮廓线傅立叶描述子特征的模糊分类器和基于下肢关节角度特征的贝叶斯分类器进行识别,再利用径向基函数神经网络的学习和分类功能,对获得的输出信息进行度量层的融合和再识别。仿真实验结果表明,该算法获得更加精确的分类效果。 相似文献
2.
《计算机科学与探索》2016,(12):1729-1736
在癫痫脑电图(electroencephalogram,EEG)信号识别中,传统的智能建模方法要求训练数据集和测试数据集均服从相同的分布。但在实际应用中,某些情况并不能满足此条件,进而导致传统方法性能急剧下降。针对上述情况,引入迁移学习策略,提出了适用于数据分布迁移环境的直推式径向基神经网络(transductive radial basis function neural network,TRBFNN)。该方法在癫痫EEG信号识别中的实验结果表明:直推式径向基神经网络具有较好的场景迁移适应性,对训练数据和测试数据存在差异时,识别性能不会出现急剧恶化的现象。 相似文献
3.
针对径向基神经网络(RBFNN)中隐层单元中心及输出层权值向量难以有效确定的问题,论文提出了一种基于进化思想的解决方案.以进化算法中的模式定理为理论依据,运用分治策略思想,将隐层中心的最优化过程和输出层权值向量的最优化过程并行处理,提高了算法效率.最后将设计的整体进化径向基神经网络应用于数据的分类,以UCI数据库中的iris和wheat数据集为测试物料,采用该文提出的进化方案得到最优中心和权值向量,测试表明相对于RBFNN运用聚类办法确定中心和最小二乘确定权值的方法以及支持向量机其检出率能提高20%. 相似文献
4.
FRBF: A Fuzzy Radial Basis Function Network 总被引:1,自引:0,他引:1
The FRBF network is designed by integrating the principles of a radial basis function network and the fuzzy c-means algorithm.
The architecture of the network is suitably modified at the hidden layer to realise a novel neural implementation of the fuzzy
clustering algorithm. Fuzzy set-theoretic concepts are incorporated at the input, output and hidden layers, enabling the model
to handle both linguistic and numeric inputs, and providing a soft output decision. The effectiveness of the model is demonstrated
on a speech recognition problem. 相似文献
5.
径向基函数网络的隐式曲面方法 总被引:1,自引:0,他引:1
将径向基函数网络与隐式曲面构造原理相结合,提出一种构造隐式曲面的方法.首先以描述物体曲面的隐式函数为基础构造三元显式函数,然后用径向基函数网络逼近显式函数,最后从神经网络的仿真超曲面得到描述物体的封闭曲面;并证明了在理论上此等值面可以以任意精度逼近物体曲面.该方法具有光滑度高、稳定性好,尤其适用少量采样点情形等特点.实验表明,它具有很强的造型能力. 相似文献
6.
Xu Yang 《国际自动化与计算杂志》2010,7(3)
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i. e. , slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective. 相似文献
7.
基于正规正交分解(Proper Orthogonal Decomposition,POD)提出一种适用于非线性时间序列预测的径向基函数(Radial Basis Function,RBF)神经网络模型-POD-RBF神经网络模型.该模型在选取中心时考虑了时间序列数据之间的时序关系,并且使得中心的选取具有并行性.股票价格预测问题的模拟结果表明,POD-RBF神经网络可以有效地用于非线性时间序列预测问题.与基于硬C均值(Hard C-means,HCM)聚类的RBF神经网络(HCM-RBF)和基于正交最小二乘(Orthogonal LestSquare,OLS)的RBF神经网络(OLS-PBF)相比,POD-RBF神经网络不仅具有更好的训练、预测精度,而且具有更好的收敛稳定性、更好的泛化能力和抵抗噪声干扰的能力. 相似文献
8.
9.
提出了基于智能嗅觉系统的识别混合有毒气体组分浓度的方法。该系统包括两大部分:有毒气体传感器阵列模埠和径向基函数神经网络模块。前者用于获取反映有毒气体组分的电信号,后者用于提高识别混合有毒气体组分的选择性,降低气体传感器阵列中各个敏感器件的交叉灵敏度。径向基函数神经网络具有很强的非线性并行处理能力和容错能力,实例分析取得了满意的测量结果。 相似文献
10.
介绍了一种三层径向基函数神经网络,其学习算法采用正交最小二乘算法.首先根据正交最小二乘算法得到径向基函数神经网络的结构;然后对该网络的权值进行训练使它逼近给定的函数.为了验证径向基函数神经网络所具有的对任意非线性映射的任意逼近能力和自学习、自适应能力,以两关节机械手为辨识对象来进行实验研究.实验结果表明,该径向基函数神经网络具有良好的模型学习和逼近能力,并且学习速度快、收敛性好、鲁棒性强,尤其适合于具有连续线性与非线性对象的复杂系统的控制实时性要求. 相似文献
11.
径向基函数网络的功能分析与应用的研究 总被引:37,自引:1,他引:36
丛爽 《计算机工程与应用》2002,38(3):85-87,200
径向基函数网络与BP网络在网络结构上都属于前向网络,但它们对网络权值训练所采用的算法是完全不同的。另外,径向基函数网络的网络结构与模糊系统有很紧密的关联。该文从径向基函数网络的结构入手,分别对其所具有的特点、权值训练、网络设计方法及其应用等方面,通过分析与实例,采用对比的方式,给予实验的验证。 相似文献
12.
为了简化径向基网络结构,构造出良好泛化性能力的网络,提出了一种径向基(RBF)网络的两级学习新设计方法.在下级将正交最小二乘法(OLS)与A-最优设计方法(A-opt)相结合(OLS+A-opt),引入一种基于A-最优设计准则的混合代价函数,同时优化网络模型的逼近性能及模型的充分性,自动构建结构节俭的RBF网络模型;而方法中的关键学习参数A-最优代价系数通过上级粒子群优化方法(PSO)优化获取最佳值.仿真结果表明该方法所设计的RBF网络不仅具有较好的泛化性能,而且也具有良好的模型鲁棒性及充分性,是一种有效的RBF网络设计方法. 相似文献
13.
对径向基函数神经网络在疵点分类中的应用进行了研究;提出了一种应用于模式识别的RBF训练算法,提取织物疵点的特征参数如均值、方差和熵,再利用神经网络进行疵点类别的判别,精确度高达百分之九十多,准确地反映了每一类瑕疵特征的真实分布情况;然后分析了另一种神经网络--学习矢量量化网络LVQ对疵点分类的效果,将它们的训练速度和分类精度进行了比较;实验结果表明,采用RBF神经网络比LVQ神经网络的分类速度更快、精度更高,更有效地被应用于织物疵点分类中。 相似文献
14.
针对径向基函数(RBF)神经网络的非线性特点,利用已控点来训练RBF网络,而达到预测未知非地震数据控点的目的。综合已知点和预测控制点,把得到的规则数据体大致对应相应空间进行排布用以全空间成像,最后利用相关软件对处理后的非地震数据进行了三维数据的成像,从而可以显示全息的三维信息,该方法显示出很强的处理问题的能力,同时该仿真结果也表明了该方法的有效性和可行性。 相似文献
15.
鉴于BP网络训练时间过长,且易于陷入局部最优解,本文采用RBF网络来实现元音字母的语音识别。RBF网络的构造通过一种动态自适应聚类算法来完成,使得RBF网络具有在线学习能力。示例计算结果表明,这种RBF网络具有比BP网络和贝叶斯分类器更好的分类精度。 相似文献
16.
17.
针对径向基函数神经网络参数难以设置以及因此而导致的网络隐层结构不明朗的问题,提出了一种应用控制种群多样性的微粒群( ARPSO)优化径向基函数神经网络( RBF)的方法。通过引入“吸引”和“扩散”因子对基本微粒群算法进行改进,并将改进的微粒群算法用于RBF聚类半径的优化,进而能够合理地确定RBF的隐层结构。将用ARPSO优化的RBF神经网络应用于非线性函数逼近,经实验仿真验证,与基本微粒群( PSO)算法、收缩因子微粒群( CFA PSO)算法优化的RBF神经网络相比较,在收敛速度和识别精度上有了显著的提高。 相似文献
18.
19.
改进的径向基函数神经网络预测模型 总被引:1,自引:0,他引:1
在提高网络传输性能的研究中,径向基函数神经网络(RBF网络)的基函数个数、中心及宽度的确定一直是难解决的问题,为提高RBF网络泛化能力是当前一个重要的研究问题.分析了传统RBF网络工作原理及不足,提出了改进.采用梯度下降法训练径向基函数中心和宽度,提高网络泛化性能.改进最优停止训练算法,使算法效率提高,且避免过拟合现象,最终使RBF网络获得更优的泛化能力.用改进的RBF网络对iris及wine数据集建立预测模型,进行仿真.结果表明,梯度下降方法训练出更优的基函数参数,改进的最优停止训练方法缩短了训练时间、提高预测精度,网络泛化能力有明显提高. 相似文献
20.
A multistep version of Kaczmarz's projection algorithm is presented for training radial basis function network used for identification of nonlinear dynamic systems. A new recursive form of the algorithm is derived. Computer simulation shows that the new algorithm offers advantages over RLS algorithm both in convergence rate and in computation time required. 相似文献