首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yuran Li  Changfu You  Lizhai Yang 《Fuel》2010,89(8):2081-668
An empirical sulfation model for T-T sorbent clusters was developed based on amassed experimental results under moderate temperatures (300-800 °C). In the model, the reaction rate is a function of clusters mass, SO2 concentration, CO2 concentration, calcium conversion and temperature. The smaller pore volume partly results in a lower reaction rate at lower temperatures. The exponent on SO2 concentration is 0.88 in the rapid reaction stage and then decreases gradually as reaction progresses. The exponent on the fraction of the unreacted calcium is 1/3 in the first stage and then increases significantly in the second stage. The CO2 concentration has a negative influence on SO2 removal, especially for the temperature range of 400-650 °C, which should be avoided to achieve a high effective calcium conversion. The sulfation model has been verified for the T-T sorbent clusters and has also been applied to CaO particles. Over extensive reaction conditions, the predictions agree well with experimental data.  相似文献   

2.
The sulfation reaction rate of CaO particles in three reactors comprising a post‐combustion calcium looping system is discussed: a combustion chamber generating flue gases, a carbonator reactor to capture CO2 and SO2, and an oxy‐fired calciner to regenerate the CO2 sorbent. Due to its strong impact on the pore size distribution of CaO particles, the number of carbonation/calcination cycles arises as a new important variable to understand sulfation phenomena. Sulfation patterns change as a result of particle cycling, becoming more homogeneous with higher number of cycles. Experimental results from thermogravimetric tests demonstrate that high sulfation rates can be measured under all conditions tested, indicating that the calcium looping systems will be extremely efficient in SO2 capture.  相似文献   

3.
Calcium looping is an energy‐efficient CO2 capture technology that uses CaO as a regenerable sorbent. One of the advantages of Ca‐looping compared with other postcombustion technologies is the possibility of operating with flue gases that have a high SO2 content. However, experimental information on sulfation reaction rates of cycled particles in the conditions typical of a carbonator reactor is scarce. This work aims to define a semiempirical sulfation reaction model at particle level suitable for such reaction conditions. The pore blocking mechanism typically observed during the sulfation reaction of fresh calcined limestones is not observed in the case of highly cycled sorbents (N > 20) and the low values of sulfation conversion characteristic of the sorbent in the Ca‐looping system. The random pore model is able to predict reasonably well, the CaO conversion to CaSO4 taking into account the evolution of the pore structure during the calcination/carbonation cycles. The intrinsic reaction parameters derived for chemical and diffusion controlled regimes are in agreement with those found in the literature for sulfation in other systems. © 2011 American Institute of Chemical EngineersAIChE J, 2012  相似文献   

4.
Sulfidation and sulfation reactions of Daesung limestone, which is a calcium-based sorbent chosen out of domestic limestone for the removal of H2S and SO2, were investigated by using TGA (thermal gravimetric analyzer) Effects of H and H2S on the sulfidation were also investigated The conversion rate of CaS to CaSO4 in oxidation was low since the concentration of SO2 used for this study was low and CaO was not completely converted into CaS It was observed that the effects of H2 concentration on the sulfidation were relatively small and the maximum conversion rate and reaction rate increased with increase of H2S concentration In the sulfation reaction, conversion rate could be raised with the injection of air at a sulfation reaction temperature above 800 °C However, the conversion rate decreased without the injection of air due to the blockage of sorbent pores.  相似文献   

5.
The combined effect of H2O and SO2 on the reaction kinetics and pore structure of limestone during simultaneous calcination/sulfation reactions under circulating fluidized bed (CFB) conditions was first studied in a constant-temperature reactor. H2O can accelerate the sulfation reaction rate in the slow-sulfation stage significantly but has a smaller effect in the fast-sulfation stage. H2O can also accelerate the calcination of CaCO3, and should be considered as a catalyst, as the activation energy for the calcination reaction was lower in the presence of H2O. When the limestone particles are calcining, SO2 in the flue gas can react with CaO on the outer particle layer and the resulting CaSO4 blocks the CaO pores, increases the diffusion resistance of CO2, and, in consequence, decreases the calcination rate of CaCO3. Here, gases containing 15% H2O and 0.3% SO2 are shown to increase the calcination rate. This means that the accelerating effect of 15% H2O on CaCO3 decomposition is stronger than the impeding effect caused by 0.3% SO2. The calcination rate of limestone particles was controlled by both the intrinsic reaction and the CO2 diffusion rate in the pores, but the intrinsic reaction rate played a major role as indicated by the effectiveness factors determined in this work. This may explain the synergic effect of H2O and SO2 on CaCO3 decomposition observed here. Finally, the effect of H2O and SO2 on sulfur capture in a 600 MWe CFB boiler burning petroleum coke is also analyzed. The sulfation performance of limestone evaluated by simultaneous calcination/sulfation is shown to be much higher than that by sulfation of CaO. Based on our calculations, a novel use of the wet flue gas recycle method was put forward to improve the sulfur capture performance for high-sulfur low-moisture fuels such as petroleum coke. © 2019 American Institute of Chemical Engineers AIChE J, 65: 1256–1268, 2019  相似文献   

6.
Sorption of sulfur dioxide (SO2) was carried out on calcium‐based sorbents under dynamic conditions in a fixed bed. The experimental conditions were reaction temperature (700 to 1000°C), SO2 concentration (1000‐10 000 ppm), sorbent particles size (1 to 2 mm) and the types of sorbents (hydroxide or carbonate). The sorption process was found to be effective at low concentration levels (less than 10 000 ppm) as the breakthrough time significantly decreased with increase in concentration. The maximum removal of SO2 was observed at a reaction temperature of 950°C. The hydroxide‐based sorbents of relatively smaller particle size were found to exhibit superior sorption performance in terms of longer breakthrough time and higher sulfate conversion. A mathematical model developed, assuming a porous structure of the sorbent materials, attributed the low sulfation conversion during SO2 sorption due to a pore diffusion mechanism.  相似文献   

7.
8.
Calcium looping processes for capturing CO2 from large emissions sources are based on the use of CaO particles as sorbent in circulating fluidized‐bed (CFB) reactors. A continuous flow of CaO from an oxyfired calciner is fed into the carbonator and a certain inventory of active CaO is expected to capture the CO2 in the flue gas. The circulation rate and the inventory of CaO determine the CO2 capture efficiency. Other parameters such as the average carrying capacity of the CaO circulating particles, the temperature, and the gas velocity must be taken into account. To investigate the effect of these variables on CO2 capture efficiency, we used a 6.5 m height CFB carbonator connected to a twin CFB calciner. Many stationary operating states were achieved using different operating conditions. The trends of CO2 capture efficiency measured are compared with those from a simple reactor model. This information may contribute to the future scaling up of the technology. © 2010 American Institute of Chemical Engineers AIChE J, 57: 000–000, 2011  相似文献   

9.
Sorbents highly reactive towards SO2 have been prepared from iron blast furnace slag and hydrated lime under different hydration conditions. The reaction of the dry sorbents with SO2 has been studied under the conditions similar to those in the bag filters in the spray-drying flue gas desulfurization system. The reaction was well described by a modified surface coverage model which assumes the reaction rate being controlled by chemical reaction on sorbent grain surface and takes into account the effect of sorbent Ca molar content and the surface coverage by product. The effects of sorbent preparation conditions on sorbent reactivity were entirely represented by the effects of the initial specific surface area (Sg0) and the Ca molar content (M−1) of sorbent. The initial conversion rate of sorbent increased linearly with increasing Sg0, and the ultimate conversion increased linearly with increasing Sg0M−1. The initial conversion rate and ultimate conversion of sorbent increased significantly with increasing relative humidity of the gas. Temperature and SO2 concentration had mild effects on the initial conversion rate and negligible effects on the ultimate conversion.  相似文献   

10.
11.
《Fuel》2005,84(14-15):1933-1939
The microstructure and pore structure of limestone and shell as desulfurization sorbents during calcination and sulfation were investigated using the scan electron microscope and the porosimeter, respectively. The sulfation process and kinetics were analyzed by thermo-gravimetric method and modified grain reaction model. The results show that the doped alkali metal salts may improve microstructure and product diffusion of sorbent during high temperature sulfation, and enhance the initial reaction rate and the final CaO conversion of sorbents. The kinetic parameters of desulfurization with shells present compensation effect. There are linear relationships between logarithms of the pre-exponential factor ln k0, ln D0 and activation energies Ea, Ep, respectively. The activity of sorbent can not be exactly evaluated only by activation energies because of the compensation effect; and the k, Ds under certain experimental conditions can reflect the activity of sorbent. The particle pore diffusion and product layer diffusion control principally the rate of sulfation reaction. The pore size and structure and crystal lattice defects concentration caused by impurities or additives are the main factors to affect the sulfation capability of sorbent. There is an optimum content of alkali metal salts in the sorbent within a certain range of sulfation temperature, which helps sorbent to form a better microstructure and obtain higher reactive activity.  相似文献   

12.
The intrinsic rate constants of the CaO-CO2 reaction, in the presence of syngas, were studied using a grain model for a naturally occurring calcium oxide-based sorbent using a thermogravimetric analyzer. Over temperatures ranging from 580 to 700 °C, it was observed that the presence of CO and H2 (with steam) during carbonation caused a significant increase in the initial rate of carbonation, which has been attributed to the CaO surface sites catalyzing the water-gas shift reaction, increasing the local CO2 concentration. The water-gas shift reaction was assumed to be responsible for the increase in activation energy from 29.7 to 60.3 kJ/mol for limestone based on the formation of intermediate complexes. Changes in microporosity due to particle sintering during calcination have been credited with the rapid initial decrease in cyclic CaO maximum conversion for limestone particles, whereas the presence of steam during carbonation has been shown to improve the long-term maximum conversion in comparison to previous studies without steam present.  相似文献   

13.
Much SO2, another perilous air pollutant, was emitted during the oxidative regeneration of sulfided sorbent by H2S. In order to prevent emission of SO2, we carried out oxidative regeneration with the physical mixture of CaO and sulfided sorbent and investigated the effect of regeneration temperature and oxygen concentration on the reactivity of CaO with S02. The effluent gases were analyzed by G.C. and the properties of sorbent were characterized by XRD. SEM, TG/DTA and EPMA. Deterioration of reactivity of CaO with S02 resulted in increment of emission of SO12 due to the structural changes of CaO above 750°C and that at 850°C was more severe. Furthermore EPMA and XRD analysis revealed that product layer diffusion through the solid product, CaSO4, was the rate limiting step for CaO sulfidation. The reaction of CaO w:.th SO2 was first order approximately and that was accelerated by high O2 concentration.  相似文献   

14.
富氧燃烧气氛下石灰石煅烧/硫化特性及模型模拟   总被引:4,自引:4,他引:0       下载免费PDF全文
王春波  张斌  陈亮  郭泰成 《化工学报》2015,66(4):1537-1543
利用自制恒温热重装置,模拟循环流化床富氧燃烧气氛,进行了石灰石同时煅烧/硫化实验,并通过对煅烧/硫化产物孔结构以及硫化产物电导率的测量,探讨了硫化反应机理。相比石灰石先煅烧成CaO再硫化,吸收剂孔隙更容易堵塞且更早进入到产物层扩散控制阶段;产物层扩散控制阶段固态离子扩散率更高,可获得更快的硫化速率和更高的最终钙转化率。烧结会极大影响CaO的钙转化率,尤其当温度高于950℃时;粒径效应显著,随石灰石颗粒粒径减小最终钙转化率明显提高;SO2浓度提高有助于最终钙利用率的提高。建立了晶粒-微晶粒模型,对不同温度、粒径、SO2浓度条件下石灰石同时煅烧/硫化特性进行了数学模拟,模拟结果与实验结果较为吻合。  相似文献   

15.
Calcium oxide has been proved to be a suitable sorbent for high temperature CO2 capture processes based on the cyclic carbonation‐calcination reaction. It is important to have reaction rate models that are able to describe the behavior of CaO particles with respect to the carbonation reaction. Fresh calcined lime is known to be a reactive solid toward carbonation, but the average sorbent particle in a CaO‐based CO2 capture system experiences many carbonation‐calcination cycles and the reactivity changes with the number of cycles. This study applies the random pore model (RPM) to estimate the intrinsic rate parameters for the carbonation reaction and develops a simple model to calculate particle conversion with time as a function of the number of cycles, partial pressure of CO2, and temperature. This version of the RPM model integrates knowledge obtained in earlier works on intrinsic carbonation rates, critical product layer thickness, and pore structure evolution in highly cycled particles. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

16.
The catalytic activity of TiO2 nano-particles, prepared by a sol-gel method, was studied when added in the reaction between SO2 and CaO. The reaction products were analyzed by infrared spectrophotometry (IR) and specific surface area analysis and the kinetics and mechanisms of the sulfation catalyzed by the addition of TiO2 are discussed. The results indicate that nano-TiO2, which serves as an active catalytic center, enhances O2 transfer and is helpful in the diffusion of SO2 from the product layer to the inner unreacted CaO. As a result, the desulfurization efficiency increased. The results also suggest that the SO2 and NO must both be removed simultaneously in order to keep the sulfation rate. The desulfurization reactions are first order for SO2 concentration and zero order for O2 concentration and include two zones, the surface reaction zone and the product layer diffusion zone, with later being the rate limiting step. The apparent activation energy of the desulfurization reaction decreased with the addition nano-TiO2 as compared to that without. The unreacted shrinking reaction core model was used to investigate the reaction kinetics and was shown to describe the course of desulfurization. Lastly, the results obtained through calculation agree with the empirical data.  相似文献   

17.
Furnace sorbent injection (FSI) is used to remove SO2 formed during coal combustion by injecting sorbent into the high temperature zone of a furnace above the fireball. FSI is cost effective for older coal-fired boilers, especially when space or capital budgets are limited. To optimize the design and performance of FSI, an SO2/sorbent modeling scheme that simultaneously considers calcination (or dehydration), sintering, and sulfation has been developed and implemented. It is coupled with a three-dimensional combustion model based on computational fluid dynamics to determine the most desirable locations for sorbent injection and to optimize the amount of sorbent needed to achieve a targeted SO2 removal efficiency. A sensitivity analysis was conducted to determine the effect of flue gas temperature, particle diameter, and SO2 concentration on the extent of sulfation. This SO2/sorbent sub-model was applied to a 126-MW front-wall fired boiler firing eastern bituminous coal. The SO2 removal efficiencies predicted by the model agreed well with those measured in the field. The modeling results indicated that sorbent injected directly into the furnace through boosted over-fired air ports is more effective at removing SO2, due to longer residence time and better mixing, relative to ports higher in the furnace with poor mixing. This modeling approach is optimized for full-furnace application to facilitate the design process.  相似文献   

18.
The calcium‐based sorbent cyclic calcination/carbonation reaction is an effective technique for capturing CO2 from combustion processes. The CO2 capture capacity for CaO modified with ethanol/water solution was investigated over long‐term calcination/carbonation cycles. In addition, the SEM micrographs and pore structure for the calcined sorbents were analyzed. The carbonation conversion for CaO modified with ethanol/water solution is greater than that for CaO hydrated with distilled water and is much higher than that for calcined limestone. Modified CaO achieves the highest conversion for carbonation at the range of 650–700 °C. Higher values of ethanol concentration in solution result in higher carbonation conversion for modified CaO, and lead to better anti‐sintering performance. After calcination, the specific surface area and pore volume for modified CaO are higher than those for hydrated CaO, and are much greater than those for calcined limestone. The ethanol molecule enhances H2O molecule affinity and penetrability to CaO in the hydration reaction so that the pores in CaO modified are obviously expanded after calcination. CaO modified with ethanol/water solution can act as a new and promising type of calcium‐based regenerable CO2 sorbent for industrial applications.  相似文献   

19.
Sulphur dioxide removal using South African limestone/siliceous materials   总被引:1,自引:0,他引:1  
D.O. Ogenga  K.T. Lee  I. Dahlan 《Fuel》2010,89(9):2549-2038
This study presents an investigation into the desulfurization effect of sorbent derived from South African calcined limestone conditioned with fly ash. The main aim was to examine the effect of chemical composition and structural properties of the sorbent with regard to SO2 removal in dry-type flue gas desulfurization (FGD) process. South African fly ash and CaO obtained from calcination of limestone in a laboratory kiln at a temperature of 900 °C were used to synthesize CaO/ash sorbent by atmospheric hydration process. The sorbent was prepared under different hydration conditions: CaO/fly ash weight ratio, hydration temperature (55-75 °C) and hydration period (4-10 h). Desulfurization experiments were done in the fixed bed reactor at 87 °C and relative humidity of 50%. The chemical composition of both the fly ash and calcined limestone had relatively high Fe2O3 and oxides of other transitional elements which provided catalytic ability during the sorbent sorption process. Generally the sorbents had higher SO2 absorption capacity in terms of mol of SO2 per mol of sorbent (0.1403-0.3336) compared to hydrated lime alone (maximum 0.1823). The sorbents were also found to consist of mesoporous structure with larger pore volume and BET specific surface area than both CaO and fly ash. X-ray diffraction (XRD) analysis showed the presence of complex compounds containing calcium silicate hydrate in the sorbents.  相似文献   

20.
钙基吸收剂微观结构特性及其反应性能   总被引:7,自引:2,他引:7  
在小型流化床反应器中对5种钙基吸收剂的脱硫反应性能进行了实验研究,并利用扫描电镜和压汞分析等方法对吸收剂反应前后的微观结构进行了分析.结果发现石灰石吸收剂的比表面积大约是贝壳颗粒的4~5倍,但平均孔径却呈现出相反的趋势,石灰石吸收剂的最佳脱硫温度为900 ℃左右,而贝壳吸收剂最终转化率随着温度的升高而增大,在950 ℃下表现出了较好的硫化性能.研究发现吸收剂的孔结构参数是影响脱硫反应性能的主要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号