首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
Crosslinked poly(N-isopropylacrylamide) (PNIPA) gels with different crosslink densities in the form of rods and beads were prepared by free-radical crosslinking copolymerization. Solution and inverse suspension polymerization techniques were used for the gel synthesis. The gels were utilized to concentrate dilute aqueous solutions of penicillin G acylase (PGA), bovine serum albumin (BSA), and 6-aminopenicillanic acid (6-APA). The discontinuous volume transition at 34°C observed in the gel swelling was used as the basis of concentrating dilute aqueous protein solutions. PNIPA gels formed below 18°C were homogeneous, whereas those formed at higher temperatures exhibited heterogeneous structures. The water absorption capacity of PNIPA gels in the form of beads was much higher, and their rate of swelling was much faster than the rod-shaped PNIPA gels. It was also found that the polymerization techniques used significantly affect the properties of PNIPA gels. The separation efficiency decreased when the protein molecules PGA or BSA in the external solution were replaced with small-molecular-weight compounds, such as 6-APA. The protein separation efficiency by the gel beads increased to 100% after coating the bead surfaces with BSA. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 805–814, 1998  相似文献   

2.
Summary Effects of the gel preparation temperature T prep and the initial monomer concentration c on the swelling and the porosity properties of poly(N-isopropylacrylamide) (PNIPA) networks are described. PNIPA networks were prepared by free-radical crosslinking copolymerization of N-isopropylacrylamide and N,N'-methylene(bis)acrylamide (BAAm) in aqueous solutions. The crosslinker (BAAm) concentration in the initial monomer mixture was kept constant at 30 wt %. It was shown that macroporous PNIPA networks with a stable porous structure can be prepared at T prep = 22.5°C and at an initial monomer concentration c > 5 w/v %. The PNIPA networks contain pores of about 0.1 μm in radius, corresponding to the interstices between the microspheres. The experimental data also show collapse of the porous structure in PNIPA networks formed at higher temperatures. Received: 30 January 2002 / Revised version: 16 May 2002 / Accepted: 1 June 2002  相似文献   

3.
The swelling and shrinking behaviors of a series of poly(N‐isopropylacrylamide) (PNIPA) hydrogels are studied in aqueous solutions of sodium dodecylbenzenesulfonate (SDBS). Between 0 and 3 mol % 2‐acrylamido‐2‐methylpropanesulfonic acid sodium salt (AMPS) is used as an ionic comonomer in the hydrogel synthesis. It is shown that the collapsed PNIPA gels in water at 52°C start to swell above a critical SDBS concentration in the external solution. This critical concentration decreases as the ionic group content of PNIPA gel increases. A comparison of the swelling and shrinking experiments in SDBS solutions indicates strong hysteresis behavior of PNIPA gels. A more diluted solution is required to make a swollen gel start to reshrink than to cause gel swelling. The results show strong attractive forces between the isopropyl groups of the PNIPA network and the DB groups of SDBS molecules. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1228–1232, 2002  相似文献   

4.
Three kinds of physically cross‐linked syndiotacticity‐rich poly(vinyl alcohol) (s‐PVA) hydrogels were prepared at 0°C with use of the buffer solutions (BS) of pHs 4.0, 7.4, and 9.0. Three gels swelled at first and then began to shrink after 12 h when they were dipped in the same BS for preparation at higher temperature than 0°C. The release of Brilliant Blue (3 mg/1 mL) from the cylindrical gels prepared using BS of pH 7.4 was studied at 27, 37, and 47°C. Brilliant Blue has been released spending 4–12 h almost completely. The rate of release from the gel at temperatures of 27, 37, and 47°C became large with increasing temperature. The main factor on release of Brilliant Blue is not the contraction of gel, but swelling, because the degree of swelling (DS) became large with increasing temperatures for 27, 37, and 47°C. The rate of release from the gel (pH 4.0) was larger than that (pH 7.4) due to the increased DS of the hydrogel in early step at pH of 4.0. The apparent diffusion exponents of these releases at pH 7.4 evaluated from first 60% of the fractional release were lower than 0.45 due to the swelling during release. The exponent at pH 4.0 was 0.45 due to immediate swelling. The on‐off of shrinking behavior of atactic PVA (a‐PVA) hydrogel was observed under several temperature changes. The rate of release of Brilliant Blue at 5°C was lower than that at 27°C and no change was observed at 5°C after one on‐off cycle. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 41–46, 2000  相似文献   

5.
The swelling behavior of poly(N‐isopropylacrylamide) (PNIPA) gels in seawater at high pressures up to ~40 MPa is examined in terms of human activity at deep sea. The neutral gel in seawater undergoes a continuous volume transition at 26°C at atmospheric pressure. Addition of the ionic group (sodium acrylate) does not have much effect on the swelling properties of the gels in seawater except that the transition temperature is somewhat increased. At high constant pressures up to ~40 MPa, the gels undergo a continuous volume transition at 26–28°C as the temperature varies. Normally, the gel takes a swollen state at deep sea. The ratio of the volume change associated with the transition is more than 10, which is 3 times larger than that obtained by changing the pressure at a constant temperature. The results suggest a possibility that the phase transition of PNIPA gels is utilized for producing mechanochemical energy at deep sea. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1069–1072, 2005  相似文献   

6.
秦爱香  吕满庚  刘群峰  张平 《精细化工》2006,23(9):849-852,858
以N-异丙基丙烯酰胺为单体、N,N′-亚甲基双丙烯酰胺为交联剂、过硫酸铵为引发剂、N,N,N,′N′-四甲基乙二胺为加速剂,在不同浓度的羧甲基纤维素的水溶液中,在低温下聚合/交联制备了一系列快速响应的温度敏感性聚(N-异丙基丙烯酰胺)水凝胶。用SEM观察了其表面形态,测定了不同温度下达到平衡时水凝胶的溶胀比,研究了水凝胶的去溶胀动力学。结果表明,与传统水凝胶相比,该水凝胶的溶胀性能有所提高,并且对温度的变化具有较快的响应速率。以质量分数为0.75%的羧甲基纤维素水溶液中制备的水凝胶为例,该水凝胶在20℃时的溶胀比为21.4,而传统水凝胶在相同温度时的溶胀比仅为12.9;该水凝胶在1 m in内失去60%的水,在4 m in内失去约80%的水,而传统水凝胶在15 m in内仅失去66%左右的水。  相似文献   

7.
Semi-IPN formation has been achieved in a system comprising N-isopropylacrylamide and κ-carrageenan by an electron beam irradiation technique. The conditions for obtaining mechanically stable gels have been optimized. The gels were characterized by DSC, SEM, and FTIR techniques. Dynamic swelling measurements were carried out under different pH and temperature conditions. The results revealed the structure, pH, and temperature-dependent swelling behavior of the gels. The % swelling (S) of the hydrogels at various pH followed the order 9.0 < 1.2 <4.0 < 7.0. Also, the gels exhibited temperature dependence, with swelling being highest around 30°C. The “n” values for these hydrogels were in the range 0.31–0.79, indicating that the mechanism of water transport changes from Fickian to anomalous diffusion, with change in the network structure of the gel matrix.  相似文献   

8.
Composite polymers of polystyrene and gelatin have been prepared using a gel pathway. The gels have been obtained by mixing at 50°C an aqueous solution containing gelatin and a surfactant (SDS) with styrene containing an initiator (AIBN). The obtained emulsions have the appearance of gels and are very stable both at room temperature and at 50°C. At 50°C, these gels are liquidlike with high viscosity; at room temperature, solidlike gels are formed when the gelatin content is sufficiently high. Polymerization of the gels can be achieved in several days at room temperature and in 24 h at 50°C. Composite polymers with different water-absorbing capacities have been produced by controlling the polymerization temperature and duration. These composite polymers are insoluble in water, ethanol, octane, and cyclohexane, but exhibit some swelling in these liquids. Additional thermal treatment at relatively high temperatures increases the mechanical strength of the composites. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
In this study, a series of thermoresponsive cross-linked copolymer poly [N-isopropylacrylamide(NIPAm)-co-N-isopropylmethacrylamide(NIPMAm)] (P-M series samples: P-M-0, 10, 20, 30, 40, where numbers are co-monomer contents) hydrogels were prepared by free radical polymerization using the main monomer N-isopropylacrylamide (NIPAm), co-monomer N-isopropylmethacrylamide (NIPMAm), cross-linking agent N, N-methylenebisacrylamide, initiator (ammonium persulfate)/catalyst, and solvent water. In addition, a series of samples [P-G series samples: P-G-0, 10, 20, 30, 40, where numbers are co-solvent glycerol content) were prepared using P-M-40 as components and water/co-solvent glycerol as a mixed solvent. The effects of co-monomer NIPMAm and co-solvent glycerol contents on the lower critical solution temperature (LCST)/freezing temperature and light transmittance as function of temperature of the prepared copolymer gels were investigated. The resulting thermoresponsive polymer gels had LCSTs in the range of 17.9 to 38.7°C and freezing points in the range of 6.3 to −38.5°C. These gels are suitable materials for smart windows that are responsive to various environmental conditions.  相似文献   

10.
Summary A new temperature sensitive hydrogel matrix, poly(N-ethoxypropylacrylamide), PNEPAM, was obtained by the bulk polymerization of N-ethoxypropylacrylamide (NEPAM). The monomer, NEPAM was synthesized by the nucleophilic substitution reaction of 3-ethoxypropylamine and acryloyl chloride. The polymerization was performed at +4 °C, by using N,N-methylenebisacrylamide (MBAM) as crosslinker, polyethyleneglycol (PEG) 4000 as diluent, and potassium persulfate (KPS) and tetramethylethylenediamine (TEMED) as the initiator and accelerator, respectively. PNEPAM gel matrices exhibited a thermosensitive bahaviour reasonably similar to poly(N-isopropylacrylamide), PNIPAM gels. The equilibrium swelling ratio at constant temperature increased with increasing initiator concentration and decreasing monomer concentration. The use of PEG 4000 as a diluent in the gel synthesis resulted in a significant enhacement in the thermosensitivity of gel matrix. The equilibrium swelling ratios up to 60 g water/g dry gel were observed in the low-temperature region. The results indicated that PNEPAM gel is a new alternative thermosensitive material to the NIPAM based gels.  相似文献   

11.
The swelling behavior of poly(N‐isopropylacrylamide) (PNIPA) gels in polymer solutions, particularly in aqueous solutions of poly(ethylene glycol)s, was investigated using the theory of equilibrium swelling. The volume of the PNIPA gel and the partition parameter of the macromolecules between the gel and the solution phases were calculated for various extents of the energetic interactions between the components. The simulation results were compared with the experimental data reported in the literature. It was shown that the PNIPA gel has a tendency to a reentrant phase transition in an aqueous solution of low molecular weight linear polymers. In such a transition, the gel first collapses, then reswells, if the linear polymer concentration is continuously varied. The necessary condition for the reentrant behavior of PNIPA gels was predicted in terms of the interaction parameters among the PNIPA network, the linear polymer, and water. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 801– 813, 2002  相似文献   

12.
Ternary liquid–liquid phase transitions of linear poly(N-isopropylacrylamide) (PNIPA) and the swelling behavior of cross-linked PNIPA gels in water/2-propanol mixtures were investigated using thermo-optical analysis (TOA) and a photon correlation spectroscopy (PCS) technique, respectively. Closed immiscibility gaps in ternary phase diagrams were obtained below 35 °C although all binary mixtures involved in this system were completely miscible. At a fixed concentration of PNIPA (1.0 wt%), a decrease in the lower critical solution temperature (LCST) occurred first, and with an increasing 2-propanol fraction of the solvent mixture, the upper critical solution temperature (UCST) subsequently developed. Corresponding to the linear PNIPA solution behavior, swollen PNIPA gels in pure water first shrank and then reswelled with increasing 2-propanol content in a typical reentrant transition. For theoretical treatment of the mixtures, a multi-component lattice theory of mixing and Flory–Rehner chain model for elasticity were employed for molecular thermodynamic analysis. A secondary lattice concept of specific interactions was used to model binary water/PNIPA solutions, and a temperature dependence of the intermolecular interactions for 2-propanol/PNIPA was used to describe island type ternary phase diagrams. The swelling transitions of cross-linked PNIPA gels were calculated using model parameters obtained from the ternary phase diagrams of linear PNIPA or from experimental conditions. The predicted results were in good agreement with experimental data without the need for further adjustable parameters.  相似文献   

13.
Summary Biogels and bio-hybrid gels were prepared from myofibril of fish and their properties were evaluated. The muscular protein used was extracted from fish meat. After washing and centrifugal separation, the muscular protein was mixed with 3 wt % of NaCl and the gels were prepared by heating the mixtures from 50 to 90 °C. The bio-hybrid gels were prepared from fish protein gel and poly(vinyl alcohol). Tensile tests revealed that the tensile strength, strain at break and Young’s modulus of heated hybrid gels prepared at 50, 80 and 90 °C increased with increasing preparation temperature. This can be explained by the difference in crosslinking density. Also, the heated gels showed a good response to electric field in acid and alkaline solutions. Young modulus, tensile strength and elongation at break of the bio-hybrid gels increased with an increasing PVA content. Bending of hybrid gels in solutions of various pH under the electric stimulus was observed. The largest bending angle was 20–30 °C at pH=1.2.  相似文献   

14.
A series of the 2-hydroxyethyl methacrylate/3-dimethyl-(methacryloyloxyethyl)ammonium propane sulfonate (HEMA/DMAPS) copolymeric gels was prepared from various molar ratios of HEMA and the zwitterionic monomer DMAPS. The influence of the amount of the zwitterionic monomer in the copolymeric gels on the swelling behaviors in water, various saline solutions, and temperature was investigated. The results indicate that the PHEMA hydrogel (D0) and lower DMAPS content of the HEMA/DMAPS copolymeric gel (D1) exhibit overshooting phenomena in the dynamic swelling behavior. The maximum overshooting value decreases with increase in temperature. In the equilibrium swelling ratio, the PHEMA hydrogel exhibits a minimum swelling ratio at 55°C. Then, the minimum swelling ratio diminishes gradually with increasing of the DMAPS content in the HEMA/DMAPS copolymeric gels. In the saline solution, the swelling ratios of HEMA/DMAPS copolymeric gels increase rapidly with increasing of concentration of the salt with a smaller ratio of the charge/radius. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2021–2034, 1998  相似文献   

15.
The polymerization of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) in 20 wt% aqueous ethanol solution and oligo(ethylene glycol) methyl ether methacrylate (OEGMA300, Mn = 300 g mol?1) in water was carried out in the presence of a crosslinker. Polymerization at temperatures above the lower critical solution temperature (LCST) yielded the corresponding porous poly[oligo(ethylene glycol) methyl ether methacrylate] gels by polymerization-induced phase separation. The resulting porous gels showed rapid swelling-deswelling in water. The temperature dependency of the equilibrium swelling ratio of the gels was investigated in several concentrated aqueous NaCl solutions. At 20 °C, the equilibrium swelling ratios of the POEGMA300 gel obtained from OEGMA300 were largely unaffected by NaCl concentration; however, above 30 °C, they decreased with increasing NaCl concentration. Therefore, the POEGMA300 gel showed sharp and high thermosensitivity in highly concentrated aqueous NaCl solutions. Similar swelling behaviors were observed for PMEO2MA gel, which was prepared from MEO2MA.  相似文献   

16.
Two series of nanoclay reinforced, thermoresponsive hydrogels were prepared, one based on poly(N‐isopropylacrylamide) (PNIPA) and the other on semi‐interpenetrating networks containing PNIPA and poly(N‐vinyl pyrrolidone) (PVP), designated as SIPNs. The gels were crosslinked with 1, 3, and 5 wt % inorganic clay (hectorite) and SIPN gels additionally contained 1 wt % of PVP. The hydrogels were tested in the “as‐prepared state,” i.e., at 10 wt % PNIPA concentration in water and at equilibrium (maximum) swelling. Increasing the concentration of nanoclays increases crosslink density, modulus, tensile strength, elongation (except in equilibrium swollen gels), hysteresis and with decreases in the degree of swelling, broadening of the phase transition region, and a decrease in elastic recovery at high deformations. The presence of linear PVP in the networks increases porosity and the pore size, increases swelling, deswelling rates, and hysteresis, but decreases slightly lower critical solution temperature (LCST), tensile strength, elongation, and elastic recovery. The strongest hydrogels were ones with 10 wt % PNIPA and 5 wt % of nanoclays, displaying tensile strengths of 85 kPa and elongation of 955%. All properties of hydrogels at the equilibrium swollen state are lower than in the as‐prepared state, due to the lower concentration of chains per unit volume, but the trends are preserved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
DNA hydrogels were prepared from aqueous solutions of double‐stranded DNA (about 2000 base pairs long) by physical and chemical means. Physical gels were obtained via denaturation–renaturation cycle of 5% aqueous DNA solutions between 25 and 90°C. Although physical DNA gels exhibit a high modulus of elasticity, the crosslinks holding the DNA network together are destroyed during the expansion of gels in water or in dilute salt solutions. It was shown that these gels can be used for the controlled release of DNA in aqueous media. Chemical DNA gels formed using ethylene glycol diglycidyl ether crosslinker are stable in water with a wide range of swelling ratios that could be adjusted by the amount of DNA at the gel preparation. Swelling behavior of chemical DNA gels in acetone/water mixtures as well as in aqueous salt solutions is very similar to that of synthetic polyelectrolyte hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Phase separation during the formation of poly(N‐isopropylacrylamide) (PNIPA) hydrogels was investigated using real‐time photon transmission and temperature measurements. The hydrogels were prepared by free‐radical crosslinking polymerization of N‐isopropylacrylamide (NIPA) in the presence of N,N′‐methylenebisacrylamide (BAAm) as a crosslinker in an aqueous solution. The onset reaction temperature T0 was varied between 20 and 28°C. Following an induction period, all the gelation experiments resulted in exothermic reaction profiles. A temperature increase of 6.5 ± 0.6°C was observed in the experiments. It was shown that the temperature increase during the formation and growth process of PNIPA gels is accompanied by a simultaneous decrease in the transmitted light intensities Itr. The decrease in Itr at temperatures below the lower critical solution temperature of PNIPA was explained by the concentration fluctuations due to the inhomogeneity in the gel network. At higher temperatures, it was shown that the gel system undergoes a phase transition via a spinodal decomposition process. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3589–3595, 2002  相似文献   

19.
The temperature dependence of the swelling and the creep compliance has been investigated for swollen isotropic cellulose hydrogels. The measurements were performed in a high precision type of dilatometer between 5 and 65°C. The thermal expansion of the gels in silicone oil (closed system) and the temperature dependence of the equilibrium swelling in water (open system) were studied. The influence of compressive stress in these experiments was also evaluated. The swelling level in equilibrium with water diminishes slightly with increasing temperature due to migration of water from the gel phase to the surrounding water phase. A secondary transition was found at 35°C where the temperature dependence of the swelling level is changed. When measured at constant gel composition the creep compliance of a highly swollen gel decreases with increasing temperature. The decrease is not, however, large enough for entropy elasticity to dominate over energetic elasticity. The energetic contribution fU/f was determined to be 0.61 for a gel swollen to 3.9 g water/g dry gel (g/g) and 1.24 for a gel swollen to 1.05 g/g. The swelling and compliance data have also been analyzed in terms of a model where the gels are assumed to behave as a filler-reinforced rubbery network. The amorphous parts of the hydrogels are thus assumed to be described by the statistical theory for polymeric networks. In proton magnetic resonance studies of a gel swollen to 4.4 g/g the spin-lattice relaxation time T1 was determined to be considerably longer than the spin-spin relaxation time T2. T2 has a maximum at 30°C. This maximum marks the onset (on the NMR time scale) of an exchange process between two types of proton species. These species are suggested to be specific hydration water and free gel water, respectively.  相似文献   

20.
Temperature-sensitive hydrogel-poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspension polymerization respectively. The swelling kinetics of the gels was also studied. With these prepared PNIPA gels, the model protein lysozyme was renatured. Within 24 h, PNIPA gel disks improved the yield of lysozyme activity by 49.3% from 3375.2 U.mg-1 to 5038.8 U.mg-1. With the addition of faster response PNIPA gel beads,the total lysozyme activity recovery was about 68.98% in 3h, as compared with 42.03% by simple batch dilution.The novel refolding system with PNIPA enables efficient refolding especially at high protein concentrations. Discussion about the mechanism revealed that when PNIPA gels were added into the refolding buffer, the hydrophobic interactions between denatured proteins and polymer gels could prevent the aggregation of refolding intermediates,thus enhanced the protein renaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号