首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relationship between the miscibility and the physical properties of polymer blends of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene (PS), high-impact polystyrene (IPS) and poly(styrene-block-butadiene-block-styrene) (SBS), which are blended in different compositions by a twin-screw extruder is discussed. The three types of SBS that were used are SBS1, SBS2 and SBS3 having different styrene/butadiene ratios. Dynamic mechanical analysis and differential scanning calorimetry were used to study the miscibility. The morphology was examined by SEM. The miscibility of the blends decreases with decreasing PS content. The notch sensitivity is improved by blending. Finally, the micelle model was used to explain the testing phenomena.  相似文献   

2.
The compatibilizing effect of the triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) on the morphology and mechanical properties of immiscible polypropylene/polystyrene (PP/PS) blends were studied. Blends with three different weight ratios of PP and PS were prepared and three different concentrations of SBS were used for investigations of its compatibilizing effects. Scanning electron microscopy (SEM) showed that SBS reduced the diameter of the PS-dispersed particles as well as improved the adhesion between the matrix and the dispersed phase. Transmission electron microscopy (TEM) revealed that in the PP matrix dispersed particles were complex “honeycomblike” aggregates of PS particles enveloped and joined together with the SBS compatibilizer. Wide-angle X-ray diffraction (WAXD) analysis showed that the degree of crystallinity of PP/PS/SBS slightly exceeded the values given by the addition rule. At the same time, addition of SBS to pure PP and to PP/PS blends changed the orientation parameters A110 and C significantly, indicating an obvious SBS influence on the crystallization process in the PP matrix. SBS interactions with PP and PS influenced the mechanical properties of the compatibilized PP/PS/SBS blends. Addition of SBS decreased the yield stress and the Young's modulus and improved the elongation at yield as well as the notched impact strength in comparison to the binary PP/PS blends. Some theoretical models for the determination of the Young's modulus of binary PP/PS blends were used for comparison with the experimental results. The experimental line was closest to the series model line. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2625–2639, 1998  相似文献   

3.
We present a basic study of the thermal, dielectric, Theological, and mechanical properties of hydroxybenzoic acid-ethylene terephthalate copolymers (PHB-PET). It is argued that they have two-phase structures, one rich in ethylene terephthalate (PET) and one rich in hydroxybenzoic acid (PHB). Polystyrene (PS) is immiscible in 60% PHB-PET (60-PHB-PET) blends. Polycarbonate (PC) is partially miscible with the high PET phase of 60-PHB-PET. PET seems completely miscible with this high PET phase. Shear viscosity measurements on blends indicate that 60-PHB-PET gives rise to large reductions of viscosity. Extrudates and melt-spun fibers have been prepared. The phase morphologies of low PHB-PET blends as determined by scanning electron microscopy indicate ellipsoids or long fibrils of the, 60-PHB-PET in PS or PC matrices. High extrusion rates and melt spinning produce fibrillar structures. The mechanical properties of films, extrudates, and melt-spun fibers were studied. Blends with 10% 60-PHB-PET exhibited significant increases in Young's modulus and tensile strength.  相似文献   

4.
Abstract

The effect of SBS and nano-CaCO3 on the mechanical properties of PS blends was studied, and their morphologies were characterised by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Izod impact strengths of notched samples of PS/SBS/CaCO3 blends with nanometre particles of nano-CaCO3 and SBS are higher than those of PS and PS/SBS blends with the same content of SBS, and the tensile strengths are higher than those of PS/SBS blends. The inclusion of nano-CaCO3 within the dispersed phase of SBS enlarges the volume of the domains of SBS, which increases the toughness of the ternary blends (PS/SBS/CaCO3). The mass ratio of SBS/CaCO 3 plays an important role in the properties of the ternary blends because it affects the concentration of SBS in these blends, the dispersion of nano-CaCO3 and the morphology of the ternary blends.  相似文献   

5.
Blends of styrene–butadiene–styrene (SBS) or styrene–ethylene/1‐butene–styrene (SEBS) triblock copolymers with a commercial mixture of polystyrene (PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) were prepared in the melt at different temperatures according to the chemical kind of the copolymer. Although solution‐cast SBS/PPO and SBS/PS blends were already known in the literature, a general and systematic study of the miscibility of the PS/PPO blend with a styrene‐based triblock copolymer in the melt was still missing. The thermal and mechanical behavior of SBS/(PPO/PS) blends was investigated by means of DSC and dynamic thermomechanical analysis (DMTA). The results were then compared to analogous SEBS/(PPO/PS) blends, for which the presence of a saturated olefinic block allowed processing at higher temperatures (220°C instead of 180°C). All the blends were further characterized by SEM and TGA to tentatively relate the observed properties with the blends' morphology and degradation temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2698–2705, 2003  相似文献   

6.
The phase behavior of the blends of poly(ethylene terephthalate) (PET) and poly(Resorcinol Phthalate-block-Carbonate) (RPC) and the blends of PET and poly(Bisphenol-A Carbonate) (PC) was investigated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). Blends of high molecular weight PET and RPC copolymer with 20 mol% resorcinol phthalate (RPC20) showed two glass transition temperatures in DMA and DSC but the cold crystallization rate of PET phase was substantially lowered as compared to neat PET, indicating partial miscibility at all compositions. The RPC20 with Mw = 31,500 g/mol formed miscible blends with PET when PET has weight-average molecular weight <9500 g/mol. The Flory-Huggins interaction parameter between PET and RPC20 was calculated to be 0.029 ± 0.003 by using the Flory-Huggins equation at critical composition and molecular weight. PC with Mw = 30,000 g/mol formed miscible blends with PET only when PET had molecular weight <2800 g/mol, indicating PC/PET blends were much less miscible than RPC20/PET blends. Group contribution methods agreed well with the experimental results obtained both in the present study and a previous study [1], predicting that the addition of a resorcinol phthalate block to a PC backbone should increase the miscibility of PC and PET.  相似文献   

7.
Blends of polycarbonate/polystyrene (PC/PS), polycarbonate/polypropylene (PC/PP) and ternary blends of the three components (PC/PS/PP) were studied. Extrudate swell of the molten blends increased with increasing concentrations of the minor components and leveled off at characteristic blend compositions. These compositions corresponded to the limits of compatibility as judged by the onset of brittleness in tensile tests. Both PS and PP appear to have some limited practical compatibility with PC. The change in extrudate swell behavior with concentration may be a rapid and convenient test for the effective concentration limits of partially miscible polymers.  相似文献   

8.
A tetra‐component blend, consisting of low‐density polyethylene (LDPE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS), was studied as a model system of commingled plastic wastes (LDPE/PVC/PP/PS, mass ratio: 70/10/10/10). Effects of chlorinated polyethylene (CPE), ethylene–propylene–diene monomer (EPDM), styrene–butadiene–styrene (SBS), and their mixture (CPE/EPDM/SBS, mass ratio: 2/2/2) on the mechanical properties and morphology of the system were investigated. With addition of several elastomers and their mixture, the tensile strength of the blends decreased slightly, although both the elongation at break and the impact strength increased. Among these elastomers, EPDM exhibited the most significant impact modification effect for the tetra‐component blends. SBS and the mixture have a good phase‐dispersion effect for the tetra‐component blend. By adding a crosslinking agent [dicumyl peroxide (DCP)], the mechanical properties of the tetra‐component blends also increased. When either SBS or the mixture was added to the blend together with DCP, the probability that the crosslinking agent (DCP) would be at the interface improved because of the phase‐dispersion effect of SBS. Therefore, more co‐crosslinked products will form between LDPE and other components. Accordingly, remarkable improvement of the interfacial adhesion and hence the mechanical properties of the tetra‐component blends occurred. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2947–2952, 2001  相似文献   

9.
The effectiveness of chlorinated polyethylene-graft-polystyrene (CPE-g-PS) as a polymeric compatibilizer for immiscible poly(vinyl chloride)/polystyrene (PVC/PS) blends was investigated. The miscibility, phase behavior, and mechanical properties were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), Izod impact tests, tensile tests, and scanning electron microscopy (SEM). DSC and DMA studies showed that PVC is immiscible with chlorinated polyethylene (CPE) in CPE-g-PS, whereas the PS homopolymer is miscible with PS in CPE-g-PS. The PVC/PS/CPE-g-PS ternary blends exhibit a three-phase structure: PVC phase, CPE phase, and PS phase that consisted of a PS homopolymer and PS in CPE-g-PS. The mechanical properties showed that CPE-g-PS interacts well with both PVC and PS and can be used as a polymeric compatibilizer for PVC/PS blends. CPE-g-PS can also be used as an impact modifier for both PVC and PS. SEM observations confirmed, after the addition of CPE-g-PS, improvement of the interfacial adhesion between the phases of the PVC/PS blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 995–1003, 1998  相似文献   

10.
It is shown by differential scanning calorimetry (DSC) measurements that lightly sulfonated polystyrene (SPS) is partially miscible with polysulfone (PSF), polycarbonate (PC), polyetherimide (PEI), and a thermotropic liquid crystalline polymer (LCP). Fourier transform infrared analysis confirms that the miscibility of SPS and PSF, and of SPS and PC, comes from the ion–dipole interaction between the sulfonate groups of SPS and the polar groups of PSF and PC, respectively. After the addition of SPS to LCP/PSF, LCP/PC, and LCP/PEI blends, this specific interaction leads to the compatibilization of SPS in these blends, which is revealed by inward glass transition temperature shifts of component polymers in DSC and dynamic mechanical analysis thermograms and by a much finer dispersion of the minor LCP phase in these matrix polymers. The utilization of SPS as the compatibilizer results in a stronger interfacial adhesion between LCP and matrix phases and improves the mechanical performances of LCP/PSF, LCP/PC, and LCP/PEI blends as well. Compared with ternary LCP/PSF, LCP/PC, and LCP/PEI blends with polystyrene as an inert third component, the ternary LCP/SPS/PSF, LCP/SPS/PC, and LCP/SPS/PEI blends have significantly enhanced tensile strengths and moduli, with acceptable processabilities at the same time. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2141–2151, 1998  相似文献   

11.
This study investigated the effect of ultrasound irradiation on blends of polyethylene terephtalate (PET) and polycarbonate (PC). The blends of PET/PC were prepared by a twin-screw extruder with an attached ultrasonic device. Thermal, rheological, and mechanical properties and morphology of the blends with and without sonication have been analyzed. The two distinct Tgs of the blends measured by DSC showed immiscibility over all compositions. The theoretical PET content that is miscible in PC-rich phase calculated using the Fox equation showed that ultrasonic waves made the blends more miscible. From mechanical test results, when sonication was not applied, the 20/80 blend was the most miscible composition. At that composition, the impact strength of sonicated blend was surprisingly high. It was believed to be due to the enhancement of compatibility by a reaction such as transesterification. The results from the morphology of the 20/80 sonicated blend were in agreement with DSC and impact test results.  相似文献   

12.
The domain structure and miscibility in the solid state of a series of blends of styrene‐butadiene‐styrene (SBS) block copolymers and styrene‐glycidyl methacrylate (PS‐GMA) statistical copolymers with varying molecular weights and compositions were studied using small angle X‐ray scattering and dynamic mechanical thermal analysis. Depending on the molecular characteristics of each component, different types and degrees of solubilization of PS‐GMA in SBS were found which, in addition to the initially SBS phase morphology, lead to materials with multiphase domain morphologies with differences in size and structure. The degree of solubilization of PS‐GMA into the PS domains of SBS was found to be higher for blends containing PS‐GMA with lower molecular weight (Mw = 18 100 g mol?1) and lower GMA content (1 wt%) and/or for SBS with higher PS content (39 wt%) and longer PS blocks (Mw = 19 600 g mol?1). Localized solubilization of PS‐GMA in the middle of PS domains of SBS was found to be the most probable to occur for the systems under study, causing swelling of PS domains. However, uniform solubilization was also observed for SBS/PS‐GMA blends containing SBS with composition in the range of a morphological transition (PS block Mw = 19 600 g mol?1 and 39 wt% of PS) causing a morphological transition in the SBS copolymer (cylinder to lamella). Copyright © 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

13.
The effect of thermal history on the orientation and relaxation behavior of blends of polystyrene with poly(vinyl methyl ether) (PS/PVME) has been studied using polarization modulation infrared linear dichroism (PM-IRLD) and differential scanning calorimetry (DSC). DSC shows that miscible PS/PVME blends containing 70% of PS can be physically aged at temperatures above their mean glass transition temperature (Tg). PM-IRLD measurements reveal that both components become more oriented upon stretching at 51 °C (8 °C above Tg) if the sample is aged at the deformation temperature prior to stretching. Room-temperature aging can also lead to an increased orientation if the heating time at 51 °C is kept short. Moreover, PS and PVME develop a larger orientation in phase-separated blends than in miscible ones, and their relaxation is hindered. The results have been interpreted considering the morphology of the samples, including the presence of concentration fluctuations in miscible blends, and the effect of the local environment on the rigidity of the chains.  相似文献   

14.
Block‐copolymers containing poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) and polycarbonate of bisphenol A (PC) segments were employed as compatibilizers in polystyrene (PS)/PC blends. Block‐copolymers were prepared starting from oligomeric diols‐terminated PPO and PC. The poly(phenylene ethers) was obtained by oxidative coupling of 2,6‐dimethyl‐phenol in presence of tetramethyl bisphenol A. The copolymers were obtained with a chain extension reaction between the starting oligomers using bischloroformate of bisphenol A or phosgene as coupling agent. PS/PC blends, cast from chloroform solutions or mixed by melt, were studied by differential scanning calorimeter (DSC), dynamic‐mechanical thermal analysis (DMTA), and optical microscopy (OP). The thermal and morphological analyses showed a clear compatibilization effect between PS and PC, if PPO–PC copolymer is added when blending is performed in the melt; in addition, also mechanical properties are increased when compared with blends without PPO–PC. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4654–4660, 2006  相似文献   

15.
To increase the compatibility of polystyrene (PS) and polyolefin elastomer (POE) blends, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel–Crafts alkylation reaction for the formation of PS‐graft‐POE copolymer. Dynamic mechanical analysis indicated that PS/POE and PS/POE/AlCl3 blends are partially miscible, and the formation of PS‐graft‐POE copolymer increased the compatibility between PS and POE. Scanning electron microscope and transmission electron microscope results showed that the domain size of the blends decreased dramatically and the size distribution became more uniform with the addition of AlCl3. Such in situ compatibilization also induced hindrance to the macromolecular chain movement, as reflected by the results of the dynamic rheological analysis. The dynamic rheological behaviors of PS/POE and PS/POE/AlCl3 blends under different temperature showed that in situ compatibilization weakened the effects of thermooxidation on PS/POE blends. Moreover, in situ compatibilization decreased the activation energy of viscous flow and reduced the influence of temperature on PS/POE blends. POLYM. ENG. SCI., 47:951–959, 2007. © 2007 Society of Plastics Engineers  相似文献   

16.
The dynamic mechanical, thermal, and morphological properties of poly(2-methoxy)cyanurate of bisphenol-C (PMCBC), polystyrene (PS), and their blends have been investigated. Dynamic mechanical data show that there is appreciable adhesion at the PMCBC/PS interface but that the PMCBC/PS blends are incompatible. Morphological and thermal analysis results indicate that the PS appears as inclusions in the PMCBC matrix and as a result of interfacial adhesion contributes substantially to the sample's overall modulus. Theories based on perfect adhesion are found to be applicable to the PMCBC/PS blends.  相似文献   

17.
Zhiyi Yang 《Polymer》2008,49(23):5128-5136
Hydrogenated functional polynorbornene (HFPNB) was first synthesized and then it was used to investigate the rheology of HFPNB-based miscible blends with hydrogen bonding. For the investigation, functional norbornene with carboxylic (-COOH) group was first synthesized and then it was polymerized, via ring-opening metathesis polymerization followed by hydrogenation, to obtain hydrogenated functional polynorbornene (HFPNB), HPNBCOOH. Subsequently, the miscibility of binary blends consisting of (1) HPNBCOOH and polycarbonate (PC) and (2) HPNBCOOH and poly(2-vinylpyridine) (P2VP) was investigated using differential scanning calorimetry (DSC). It has been found that both PC/HPNBCOOH and P2VP/HPNBCOOH blend systems exhibit a broad, single glass transition over the entire range of blend compositions as determined by DSC, indicating that the respective blend systems are miscible, and they were found to form hydrogen bonds as determined by Fourier transform infrared (FTIR) spectroscopy. The dynamic oscillatory shear rheometry has shown that reduced log G′ versus log aTω and log G″ versus log aTω plots with aT being a temperature-dependent shift factor of PC/HPNBCOOH and P2VP/HPNBCOOH blend systems, respectively, are independent of temperature. Further, log G′ versus log G″ plots for both blend systems were also found to be independent of temperature. These observations indicate that an application of time-temperature superposition to the PC/HPNBCOOH and P2VP/HPNBCOOH miscible blend systems with hydrogen bonding is warranted although the difference in component glass transition temperature is as large as 91 °C for PC/HPNBCOOH blends, leading us to conclude that concentration fluctuations and dynamic heterogeneity in the HPBNCOOH-based miscible blend systems might be insignificant.  相似文献   

18.
The free volume parameters of styrene–butadiene–styrene copolymer/polystyrene (SBS/PS) blends were investigated with positron annihilation lifetime spectroscopy (PALS) in this study. The behaviors of free volume distribution, average free volume, and relative fractional free volume revealed the difference of interfacial miscibility. Based on different models, inter‐chain interaction parameter β, geometric factor γ, and hydrodynamic interaction parameter α obtained from free volume data were employed to further determine the effect of molecular architecture and styrene content on the miscibility. The results suggest the better miscibility in star‐shaped SBS/PS blends than that of corresponding linear SBS/PS systems, even than that of systems containing more styrene unit. In addition, differential scanning calorimetry, dynamic mechanical analysis, and scanning electron microscopy, which are sensitive to heterogeneities in larger domain size, give different results of miscibility from free volume data. It should be attributed the difference of characterization scale. The mechanical property corroborates the results of miscibility. POLYM. ENG. SCI., 54:785–793, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
As a part of long-term project aimed at super polyolefin blends, in this work, we report the mechanical reinforcement and phase morphology of the immiscible blends of polypropylene (PP) and polystyrene (PS) achieved by dynamic packing injection molding (DPIM). The shear stress (achieved by DPIM) and interfacial interaction (obtained by using styrene-butadiene-styrene (SBS) as a compatibilizer) have a great effect on phase morphology thus mechanical properties. The shear-induced morphology with core in the center and oriented zone surrounding the core was observed in the cross-section areas of the samples. The phase inversion was also found to shift towards lower PS content under shear stress, at 70 wt% in the core and 30 wt% in the oriented zone, compared with 80 wt% for static samples (without shear). The tensile strength, tensile modules and impact strength were found largely increase by means of either shear stress or compatibilizer. The PS particle size is greatly reduced with adding of SBS, and the reduced particle size results in greater resistance to deformation, which causes the co-continuous structure at oriented zone change into droplet morphology. The morphology resulting from blending and processing was discussed based on effect of interfacial tension, shear rate, phase viscosity ratio and composition. The observed change of mechanical properties was explained based on the combined effect of phase morphology (droplet-matrix or co-continuous phase) and molecular orientation under shear stress.  相似文献   

20.
Bobing He 《Polymer》2005,46(18):7624-7631
Ultrasonic attenuation and velocity, together with SEM observation were used to investigate the morphology of some polymer blends. For miscible polymer blends of PVC/NBR, because there is no phase inversion but a homogeneous system a linear change (without discontinuity) of ultrasonic velocity and attenuation was observed in a whole composition ranges. For immiscible polymer blends, namely, PP/PS, PS/EPDM and PS/SBS system, the non-linear variation of ultrasonic velocity with composition indicates the immiscibility. On the other hand, the intensity of scattering attenuation changed from system to system depending on the size of dispersed phase, but a discontinuity of scattering attenuation was always observed as the phase inversion occurred. Our result suggests the sensitivity of ultrasonic attention vs phase inversion and may be served as a useful method to fast determine the phase inversion for immiscible polymer blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号