首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Welded joints are used for construction of many structures. Residual stress is induced near the bead caused by locally given heat. Tensile residual stress on the surface may reduce fatigue strength. In this paper, a new method for reduction of residual stress using vibration during welding is proposed. As vibrational load, random vibration, white noise and filtered white noise are used. Two thin plates are butt-welded. Residual stress is measured with a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. It is concluded that tensile residual stress near the bead is reduced by using random vibration during welding.  相似文献   

2.
The China fusion engineering test reactor (CFETR) vacuum vessel is welded by narrow gap TIG (NG-TIG) welding, and the welding residual stress of the CFETR vacuum vessel can be redistributed by trailing welding ultrasonic impact treatment. In order to investigate the feasibility of the residual stress removing scheme, and to obtain the optimal trailing ultrasonic impact treatment technological parameters in the process of removing welding residual stress, a welding model that similar to vacuum vessel welding seam is established by using ABAQUS software, a NG-TIG welding heat source subroutine which is written in FORTRAN language used to simulate NG-TIG welding. According to the welding simulation results, a trailing welding ultrasonic impact treatment model is established, and the effects of the impact pin number, the impact method, the impact pin diameter and the impact frequency on welding residual stress are studied. The results show that the longitudinal residual stress in welding seam and its adjacent area and the lateral residual stress in the whole region have been obviously decreased by different trailing welding ultrasonic impact processes, and have made the tensile stress in the welding seam and its adjacent area has been changed into compressive stress, which can provide theoretical guidance and reference for actual production.  相似文献   

3.
In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.  相似文献   

4.
Dissimilar metal welds are commonly used in nuclear power plants to connect low alloy steel components and austenitic stainless steel piping systems. The integrity assessment and life estimation for such welded structures require consideration of residual stresses induced by manufacturing processes. Because the fabrication process of dissimilar metal weld joints is considerably complex, it is very difficult to accurately predict residual stresses. In this study, both numerical simulation technology and experimental method were used to investigate welding residual stress distribution in a dissimilar metal pipe joint with a medium diameter, which were performed by a multi-pass welding process. Firstly, an experimental mock-up was fabricated to measure the residual stress distributions on the inside and the outside surfaces. Then, a time-effective 3-D finite element model was developed to simulate welding residual stresses through using a simplified moving heat source. The simplified heat source method could complete the thermo-mechanical analysis in an acceptable time, and the simulation results generally matched the measured data near the weld zone. Through comparing the simulation results and the experimental measurements, we can infer that besides the multi-pass welding process other key manufacturing processes such as cladding, buttering and heat treatment should also be taken into account to accurately predict residual stresses in the whole range of the dissimilar metal pipe.  相似文献   

5.
贯穿件J形坡口焊接残余应力分析   总被引:1,自引:1,他引:0       下载免费PDF全文
核电站反应堆压力容器(RPV)顶盖控制棒驱动机构(CRDM)管座J形坡口焊缝在一回路高温高压水环境下存在应力腐蚀开裂(SCC)的风险,而焊接残余应力是SCC的主要驱动力。使用二维轴对称模型有限元方法对CRDM中心管座J形坡口进行焊接残余应力分析。为了探索一种简单、高效和保守的方法,研究了热源简化、焊缝形状简化、屈服强度、相变和强化行为对焊接残余应力的影响。结果表明:双椭球热源与均匀热源得到的残余应力结果基本一致;焊缝形状由鱼鳞状简化为方块模型对焊接残余应力结果影响不大,但是与合并焊道的结果相差较大;采用低屈服强度得到的残余应力结果并不保守;在ANSYS软件中,固液相变对残余应力结果影响不大;等向强化模型的结果比随动强化模型的结果保守;在工程上,建议采用均匀热源、方块焊道模型和等向强化模型进行焊接模拟。  相似文献   

6.
获得反应堆压力容器内部大尺寸环形异种金属焊缝残余应力分布可为反应堆压力容器结构设计和制造工艺优化提供指导,通过设计和制造能够代表产品焊接结构形式的镍基合金和低合金钢异种金属焊接结构模拟件,采用轮廓法测试焊接结构模拟件内部纵向残余应力,采用有限元法模拟计算焊接结构模拟件横向和纵向残余应力,获得了整个异种金属焊接接头残余应力分布特征。结果表明:焊缝区域内部纵向残余应力为拉伸应力,峰值应力达到500 MPa左右,并且表层应力大于内部应力,峰值应力出现在距下表面3 mm和24 mm位置;横向残余应力在焊缝区域从上表面到下表面的分布为拉应力-压应力-拉应力,压缩横向残余应力峰值达到?300 MPa,出现在距下表面约18 mm位置。本文研究可为焊接结构设计提供理论指导。   相似文献   

7.
Narrow-gap welding is a low distortion welding process. This process allows very thick plates to be joined using fewer weld passes as compared to conventional V-groove or double V-groove welding. In case of narrow-gap arc welding as the heat input and weld volume is low, it reduces thermal stress leading to reduction of both residual stress and distortion. In this present study the effect of narrow-gap welding was studied on fabrication of a scaled down port plug in the form of a trapezoidal box made of 10 mm thick mild steel (MS) plates using gas tungsten arc welding (GTAW). Inherent strain method was used for numerical prediction of resulting distortions. The numerical results compared well with that of the experimentally measured distortion. The validated numerical scheme was used for prediction of weld induced distortion due to narrow-gap welding of full scale upper port plug made of 60 mm thick SS316LN material as is proposed for use in ITER project. It was observed that it is feasible to fabricate the said port plug keeping the distortions minimum within about 7 mm using GTAW for root pass welding followed by SMAW for filler runs.  相似文献   

8.
利用中子衍射法对2219铝合金搅拌摩擦焊(FSW)和钨极保护焊(TIG)焊接件开展了三维残余应力测量,并对残余应力分布规律进行了分析。结果表明:焊接件的纵向残余应力数值较大;FSW焊接件残余应力整体较TIG焊接件的小;FSW和TIG焊接件的残余拉应力最大值分别为101 MPa和174 MPa,FSW焊接件残余拉应力最大值较TIG焊接件的小;FSW残余拉应力最大值处于轴肩边缘,且前进侧峰值大于后退侧峰值;TIG焊接件残余拉应力最大值处于焊缝边缘。通过中子衍射实验获得的焊接件残余应力分布,将可用于焊接工艺的优化与焊接件的寿命预测。  相似文献   

9.
The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress–corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress–corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress–corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components.  相似文献   

10.
Since welding residual stress is one of the major factors in the generation of primary water stress-corrosion cracking (PWSCC), it is essential to examine the welding residual stress to prevent PWSCC. Therefore, several artificial intelligence methods have been developed and studied to predict these residual stresses. In this study, three data-based models, support vector regression (SVR), fuzzy neural network (FNN), and their combined (FNN + SVR) models were used to predict the residual stress for dissimilar metal welding under a variety of welding conditions. By using a subtractive clustering (SC) method, informative data that demonstrate the characteristic behavior of the system were selected to train the models from the numerical data obtained from finite element analysis under a range of welding conditions. The FNN model was optimized using a genetic algorithm. The statistical and analytical uncertainty analysis methods of the models were applied, and their uncertainties were evaluated using 60 sampled training and optimization data sets, as well as a fixed test data set.  相似文献   

11.
16MND5钢广泛应用于核岛承压容器构件,其焊接接头不可避免地会引入高的残余应力,而焊后热处理可有效消减焊接残余应力以克服应力腐蚀裂纹的影响。本工作利用轮廓法和中子衍射技术研究了焊后热处理对16MND5钢焊接残余应力的影响。结果表明,轮廓法与中子衍射测试结果在趋势和数值上取得了较好的一致性,焊后热处理使焊接态的残余应力峰值从约420 MPa降低至约210 MPa。同时,利用金相法和SEM研究了焊后热处理对焊缝区域组织结构的影响。结果表明,焊后热处理主要表现为贝氏体和少量自回火马氏体的焊缝中心组织转变为回火贝氏体和回火马氏体,热处理后的焊缝区晶粒明显长大。  相似文献   

12.
In the past, weld-induced residual stresses caused damage to numerous (power) plant parts, components and systems (Erve, M., Wesseling, U., Kilian, R., Hardt, R., Brümmer, G., Maier, V., Ilg, U., 1994. Cracking in Stabilized Austenitic Stainless Steel Piping of German Boiling Water Reactors — Characteristic Features and Root Causes. 20. MPA-Seminar 1994, vol. 2, paper 29, pp.29.1–29.21). In the case of BWR nuclear power plants, this damage can be caused by the mechanism of intergranular stress corrosion cracking in austenitic piping or the core shroud in the reactor pressure vessel and is triggered chiefly by weld-induced residual stresses. One solution of this problem that has been used in the past involves experimental measurements of residual stresses in conjunction with weld optimization testing. However, the experimental analysis of all relevant parameters is an extremely tedious process. Numerical simulation using the finite element method (FEM) not only supplements this method but, in view of modern computer capacities, is also an equally valid alternative in its own right. This paper will demonstrate that the technique developed for numerical simulation of the welding process has not only been properly verified and validated on austenitic pipe welds, but that it also permits making selective statements on improvements to the welding process. For instance, numerical simulation can provide information on the starting point of welding for every weld bead, the effect of interpass cooling as far as a possible sensitization of the heat affected zone (HAZ) is concerned, the effect of gap width on the resultant weld residual stresses, or the effect of the ‘last pass heat sink welding’ (welding of the final passes while simultaneously cooling the inner surface with water) producing compressive stresses in the root area of a circumferential weld in an austenitic pipe. The computer program (finite element residual stress analysis) was based on a commercially available code (Hibbitt, Karlsson, Sorensen, Inc, 1997. user's manual, version 5.6), and can be used as a 2-D or 3-D FEM analysis; depending on task definition it can provide a starting point for a fracture mechanics safety analysis with acceptable computing times.  相似文献   

13.
《Journal of Nuclear Materials》2003,312(2-3):125-133
Thin walled calandria tubes for pressurised heavy water reactors are manufactured either by seam welding of Zircaloy-4 sheets or by seamless route. In the present study, the effect of processing on the critical properties such as texture, microstructure, hydriding behaviour and residual stress for both the routes as well as the mechanical anisotropy developed due to seam welding are investigated. The properties of the seam welded tube in the fusion and adjoining region are markedly different from the base material and from the seamless tube. Residual stress measurements indicate that heat affected zone (HAZ) of seam welded tubes have longitudinal tensile residual stress and the seamless tubes have uniform compressive stress along the circumference. The phase transition in the presence of residual stresses due to thermal gradient is found to modify the texture in the HAZ. The hydride orientation and mechanical anisotropy in these regions are found to be dependent on the texture of the material.  相似文献   

14.
With the development of computer hardware and software, numerical simulation technology has been widely used to predict welding temperature field, residual stresses and distortion. However, till now the influences of initial stresses induced by the manufacturing process before welding on the welding-induced residual stresses are rarely investigated experimentally and numerically. In the present work, we have developed a computational approach based on thermal elastic plastic FEM to clarify how the initial stresses due to heat treatment affect the welding-induced residual stresses in an austenitic stainless steel pipe. A heat treatment process, which is similar to solution heat treatment, is employed to produce initial stresses in the pipe before welding. After the heat treatment, the laser beam welding is used to perform a girth weld in the middle of the pipe. Through comparing the residual stress distributions after heat treatment and laser beam welding, we have investigated the influence of the initial residual stresses on the welding-induced residual stresses. The numerical results suggest that the initial residual stresses prior to welding have significant effects on the residual stresses after welding in the pipe model.  相似文献   

15.
In this study, a new explosive welding method provided an effective way for manufacturing ITER-grade 316L(N)/CuCrZr hollow structural member. The welding parameters (stand-off distance and explosion rate) were calculated respectively using equivalent frontal collision wave model and effective energy model. The welded samples were subject to two step heat treatment cycles (solution annealing and aging). Optical microscopy (OM) and scanning electron microscopy (SEM) were utilized to analyze the microstructure of bonding interface. The mechanical properties of the welded samples were evaluated through microhardness test and tensile test. Moreover, the sealing property of the welded specimens was measured through helium leak test.Microstructural analysis showed that the welded sample using effective energy model had an ideal wavy interface. The results of microhardness test revealed an increase in hardness for both sides near to the bonding interface. And the hardening phenomenon of interface region disappeared after the solution annealing. SEM observation indicated that the samples with the post heat treatments exhibited a ductile fracture with dimple features after tensile test. After the specimens undergo aging strengthening, there was an obvious increase in the strength for all specimens. The helium leak test results have proven that the welded specimens are soundness.  相似文献   

16.
This paper discusses the development and application of FineLine™ Welding (FLW). FLW is a modified Gas-Tungsten-Arc Welding mechanized process developed by GE Nuclear Energy. The FLW process offers significant improvements over standard and narrow-gap welding. For piping, FLW reduces the weld groove width and volume of weld metal compared to standard ‘V’ or J-Bevel welds by approximately 30% for smaller pipe and 70% or more for larger sizes. Also, extremely low heat inputs are achieved, and typically result in: (1) significant reductions in welding elapsed time, particularly for thicker walls, (2) compressive/very low tensile residual stresses on the pipe inside surface, and (3) improved heat-affected-zone microstructure, with reduced shrinkage/distortion. The improved residual stress and metallurgical states provide increased resistance to stress corrosion cracking in high temperature, oxidizing water. The FLW process is successful in eliminating the need for secondary stress improvement process such as induction-heating stress improvement. Verifications of the stress improvement were performed on standard V-groove and narrow-gap welds, which were compared to thin and thick-wall stainless steel pipe FLW welds. Testing included strain-gage, X-ray diffraction, magnesium chloride and metallographic evaluations. The results show significant improvement in the residual stress level and uniformity of the FLW welds.  相似文献   

17.
Experience has shown that austenitic piping is susceptible to IGSCC in the weld root area under BWR service conditions. Besides non-optimized materials, the residual stresses which are an inherent result of conventional welding processes are also responsible for this susceptibility. In the past, mechanical, thermal and welding post-treatment processes were developed and used with the objective of reducing tensile stresses in the root area. This paper discusses past experience and more recent developments, in particular the latest results with pipe welds treated by means of welding processes (last pass heat sink welding). These measures are suitable for producing compressive stresses in the medium-swept ID-HAZ of austenitic welds, or to at least significantly reduce the tensile stresses and thus practically eliminate the risk of IGSCC.  相似文献   

18.
管道焊接残余应力是影响管道安全和使用寿命的关键因素。中子衍射是唯一无损检测厚钢焊缝结构完整性的方法。本文主要采用中子衍射谱仪,辅以显微镜和硬度分析仪研究40 mm厚STE460钢管钨极惰性气体保护焊得的焊缝的残余应力分布、微观形貌、维氏硬度等。研究结果表明,焊缝的残余应力最高达670 MPa,非常接近STE460钢抗拉强度极限,而热影响区内的残余应力很小。全峰半高宽分析表明,焊缝区域塑性形变程度较低。整个焊缝不同区域的晶体显微照片表明其皆是均匀细晶。沿着焊缝方向和垂直焊缝方向的维氏硬度几乎一致,均在(200~250)HV02范围内。分析测试结果不仅满足工业应用里的电站基础结构建设和其他非破坏性残余应力评估装置校准的需求,并能增加对STE460钢厚截面焊缝的认知。  相似文献   

19.
The high-temperature strength and creep properties are among the crucial criteria for the structural materials of plasma facing components (PFC) of fusion reactors, as they will be subjected to severe thermal stresses. The fiber-reinforced metal matrix composites are a potential heat sink material for the PFC application, since the combination of different material properties can lead to versatile performances. In this article, the overall mechanical properties of two model composites based on theoretical predictions are presented. The matrix materials considered were a precipitation hardened CuCrZr alloy and reduced activation martensitic steel `Eurofer'. Continuous SiC fibers were used for the reinforcement. The results demonstrate that yield stress, ultimate tensile strength, work hardening rate and creep resistance could be extensively improved by the fiber reinforcement up to fiber content of 40 vol.%. The influence of the residual stresses on the plastic behavior of the composites is also discussed.  相似文献   

20.
Welding is widely used for joints of many structures. In this paper, the effect of welding on dynamic characteristics is examined based on experiment. First, dynamic characteristics of simple specimens with welding are measured. Next, the effect of welding on random vibration and reliability for the first passage problem is examined by a theoretical method using an analytical model with response characteristics measured from experiment. Finally, the applicability of obtained results to actual structures is examined by an experiment using a frame model. It is concluded that the damping ratio increases when welding is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号