首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
It is known that under-borated coolant can accumulate in the loops and that it can be transported towards the reactor core during a loss-of-coolant-accident. Therefore, the mixing of weakly borated water inside the reactor pressure vessel was investigated using the ROCOM test facility. Wire-mesh sensors based on electrical conductivity measurement are used to measure in detail the spreading of a tracer solution in the facility. The mixing in the downcomer was observed with a measuring grid of 64 azimuthal and 32 vertical positions. The resulting distribution of the boron concentration at the core inlet was measured with a sensor integrated into the lower core support plate providing one measurement position at the entry into each fuel assembly.

The boundary conditions for this mixing experiment are taken from an experiment at the thermal hydraulic test facility PKL operated by AREVA Germany. The slugs, which have a lower density, accumulate in the upper part of the downcomer after entering the vessel. The ECC water injected into the reactor pressure vessel falls almost straight down through this weakly borated water layer and accelerates as it drops over the height of the downcomer. On the outer sides of the ECC streak, lower borated coolant admixes and flows together with the ECC water downwards. This has been found to be the only mechanism of transporting the lower borated water into the lower plenum. In the core inlet plane, a reduced boron concentration is detected only in the outer reaches of the core inlet. The minimum instantaneous boron concentration that was measured at a single fuel element inlet was found to be 66.3% of the initial 2500 ppm.  相似文献   


2.
The influence of density differences on the mixing of the primary loop inventory and the emergency core cooling (ECC) water in the downcomer of a pressurized water reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields.An experiment with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water was selected for validation of the CFD software packages CFX-5 and Trio_U. Two similar meshes with approximately 2 million control volumes were used for the calculations. The effects of turbulence on the mean flow were modeled with a Reynolds stress turbulence model in CFX-5 and a LES approach in Trio_U. CFX-5 is a commercial code package offered from ANSYS Inc. and Trio_U is a CFD tool which is developed by the CEA-Grenoble, France.The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: at higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this propagation. The ECC water falls in an almost vertical path and reaches the lower downcomer sensor directly below the inlet nozzle. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. Both CFD codes were able to predict well the observed flow patterns and mixing phenomena.  相似文献   

3.
For the validation of computational fluid dynamics (CFD) codes, experimental data on fluid flow parameters with high resolution in time and space are needed.Rossendorf Coolant Mixing Model (ROCOM) is a test facility for the investigation of coolant mixing in the primary circuit of pressurized water reactors. This facility reproduces the primary circuit of a German KONVOI-type reactor. All important details of the reactor pressure vessel are modelled at a linear scale of 1:5. The facility is characterized by flexible possibilities of operation in a wide variety of flow regimes and boundary conditions. The flow path of the coolant from the cold legs through the downcomer until the inlet into the core is equipped with high-resolution detectors, in particular, wire mesh sensors in the downcomer of the vessel with a mesh of 64 × 32 measurement positions and in the core inlet plane with one measurement position for the entry into each fuel assembly, to enable high-level CFD code validation. Two different types of experiments at the ROCOM test facility have been proposed for this purpose. The first proposal concerns the transport of a slug of hot, under-borated condensate, which has formed in the cold leg after a small break LOCA, towards the reactor core under natural circulation. The propagation of the emergency core cooling water in the test facility under natural circulation or even stagnant flow conditions should be investigated in the second type of experiment. The measured data can contribute significantly to the validation of CFD codes for complex mixing processes with high relevance for nuclear safety.  相似文献   

4.
压水堆高压安注条件下冷热流体混合会导致承压热冲击现象,影响压力容器的使用寿命。本文基于ROCOM实验装置的实验数据,使用CFD方法对高压安注条件下有密度差的冷热流体混合现象进行了模拟,并对模拟结果进行了验证与分析。结果表明,在冷管段和下降段环腔中流体混合的主导因素分别为强迫流动混合和浮升力驱动混合。在仅有1条冷管段注入的情况下,进入下腔室的流体会再次回流至环腔,从而对冷却剂的混合特性产生影响。  相似文献   

5.
ROCOM is a four-loop test facility used for the investigation of coolant mixing in the primary circuit of pressurized water reactors. Recently, a new sensor was developed for an improved visualisation and quantification of the coolant mixing in the downcomer. This new sensor array spans a dense measuring grid and covers nearly the whole downcomer. In the presented work, special emphasis was given to the comparison of the data of this sensor with the results of calculations using the Computational Fluid Dynamics (CFD) code ANSYS CFX. A coolant mixing experiment during natural circulation conditions has been conducted. The underlying scenario of this experiment is based on a boron dilution scenario following a SBLOCA event. The corresponding CFD code solution has been obtained using the Best Practice Guidelines. All main effects observed in the measurement are described by the calculation. The detailed comparison reveals that the calculation underestimates the coolant mixing inside the reactor pressure vessel.The measurement data, boundary conditions of the experiment and facility geometry can be made available to other CFD code users for benchmarking.  相似文献   

6.
During the last years, boron dilution events with the potential of reactivity transients were an important issue of German PWR safety analyses. A coolant with a low-boron concentration could be collected in localized areas of the reactor coolant system, e.g., by separation of a borated reactor coolant into highly concentrated and diluted fractions (inherent dilution) which can occur during reflux-condenser heat transfer after a small break loss of coolant accident with a limited availability of the emergency core cooling systems.During the course of follower core assessments, TÜV NORD SysTec appraises safety analyses of boron dilution events presented by the utilities. These analyses are based on the simulation of boron dilution and transport processes in conjunction with a number of dedicated experiments. The analyses demonstrate that boron dilution events cannot lead to recriticality of the core. Hence, the boron concentration at the core inlet has to be determined.TÜV NORD SysTec applies the CFD code FLUENT for the investigation of boron dilution events in pressurized water reactors. To affirm the FLUENT abilities for the simulation of boron dilution events, a validation against the ROCOM experiment T6655_21 with a density-driven coolant mixing was performed. This validation proves that FLUENT is able to appropriately simulate the effects of boron transport and dilution such as streaks of coolant with lower density in the downcomer. Deficits were identified in the simulation of fluid layering in the cold leg, which fortunately have a rather small influence on the predicted core inlet concentration. Therefore, the boron concentration in the reactor core can be determined with sufficient accuracy to solve the safety issue, regardless of the core becoming critical or not.  相似文献   

7.
The core bypass phenomenon of borated water injected through direct vessel injection (DVI) nozzles in APR1400 (Advanced Power Reactor 1400MWe) during main steam line break (MSLB) accidents with a reactor coolant pump (RCP) running mode has been simulated using a two-channel and one-dimensional system analysis model code (MARS), and a three-dimensional computational fluid dynamics (CFD) code (FLUENT). A visualization experiment has also been performed using a scaled-down model of the APR1400. The MARS analysis has predicted a serious core bypass phenomenon of borated water, while the CFD analysis has shown results opposite to the MARS results. The CFD analysis has shown that the flow pattern in the downcomer is fully three-dimensional and that vortex flow structures are formed near the cold legs so that the borated water might pass without difficulty into the high flow region of the cold legs and flow well into the lower downcomer. The visualization experiment has shown that the borated water flows well to the lower plenum, as in the CFD analysis. Both the CFD analysis and visualization experiment have proved that a serious core bypass phenomenon of borated water might not happen in the APR1400. These results are quite different from those predicted by MARS.  相似文献   

8.
The EU project FLOMIX-R was aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity.This report will focus on the computational fluid dynamics (CFD) code validation. Best practice guidelines (BPG) were applied in all CFD work when choosing computational grid, time step, turbulence models, modelling of internal geometry, boundary conditions, numerical schemes and convergence criteria. The strategy of code validation based on the BPG and a matrix of CFD code validation calculations have been elaborated. CFD calculations have been accomplished for selected experiments with two different CFD codes (CFX, FLUENT). The matrix of benchmark cases contains slug mixing tests simulating the start-up of the first main circulation pump which have been performed with three 1:5 scaled facilities: the Rossendorf coolant mixing model ROCOM, the Vattenfall test facility and a metal mock-up of a VVER-1000 type reactor. Before studying mixing in transients, ROCOM test cases with steady-state flow conditions were considered. Considering buoyancy driven mixing, experimental results on mixing of fluids with density differences obtained at ROCOM and the FORTUM PTS test facility were compared with calculations. Methods for a quantitative comparison between the calculated and measured mixing scalar distributions have been elaborated and applied. Based on the “best practice CFD solutions”, conclusions on the applicability of CFD for turbulent mixing problems in PWR were drawn and recommendations on CFD modelling were given. The results of the CFD calculations are mostly in-between the uncertainty bands of the experiments. Although no fully grid-independent numerical solutions could be obtained, it can be concluded about the suitability of applying CFD methods in engineering applications for turbulent mixing in nuclear reactors.  相似文献   

9.
发生堆芯应急冷却安注时,外部注入的含硼冷却剂与稀释水团将在环形下降段内发生混合,含硼冷却剂与稀释水团混合不均匀可能导致堆芯重返临界。本文基于Fluent 18.0对环形下降段内的流动混合特性进行分析。横截面的速度分布显示,入口截面的水平方向速度随周向位置的增加而显著衰减,而环形下降段下部区域横截面的速度分布趋于平缓;三维流线图显示,流体进入压力容器后在环腔内壁发生剧烈碰撞,随后绕环形下降段呈放射状流动。通过自定义硼酸溶液,并模拟其与稀释水团之间混合,数值结果与相关的实验研究结果较为一致;三维浓度分布显示,雷诺数较低时入口硼酸溶液将停滞在环形下降段上部空间,增加入口雷诺数有利于搅混均匀。  相似文献   

10.
In nuclear reactor safety the mixing of borated and deborated water is a critical issue that needs investigation, assessment and prediction. Such mixing is buoyancy driven and numerical codes must correctly model momentum transfer between fluids of different density. To assess and develop CFD models for buoyancy driven mixing we set up a simple vertical mixing test facility (VeMix) and equipped it with a newly developed planar electrical imaging sensor. This imaging sensor acquires conductivity images of the liquid at the rear channel wall with a speed of 2,500 frames/s. By adding NaCl tracer to the denser fluid we were able to visualize the mixing process in high spatial and temporal detail. Furthermore, an image processing algorithm based on the optical flow concept was implemented and tested which allows the measurement of flow pattern velocities. Selected experiments at different Richardson numbers were run with two components of different density (pure water and glucose-water mixture) simulating borated and deborated water in a light water reactor scenario. These experiments were compared to CFD calculations using standard turbulence models. Good agreement between experimental data and CFD simulations was found.  相似文献   

11.
Experimental investigations and computational fluid dynamics (CFD) calculations on coolant mixing in pressurised water reactors (PWR) have been performed within the EC project FLOMIX-R. The project aims at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. Measurement data from a set of mixing experiments have been gained by using advanced measurement techniques with enhanced resolution in time and space. Slug mixing tests simulating the start-up of the first main circulation pump are performed with two 1:5 scaled facilities: the Rossendorf Coolant Mixing model ROCOM and the Vattenfall test facility. Additional data on slug mixing in a VVER-1000 type reactor have been gained at a 1:5 scaled metal mock-up at EDO Gidropress. Experimental results on buoyancy driven mixing of fluids with density differences have been obtained at ROCOM and the Fortum PTS test facility.Concerning mixing phenomena of interest for operational issues and thermal fatigue, flow distribution data available from commissioning tests at PWRs and VVER are used together with the data from the ROCOM facility as a basis for the flow distribution studies.In the paper, the experiments performed are described, results of the mixing experiments are shown and discussed. Efforts on computational fluid dynamics codes validation on selected mixing tests applying Best Practice Guidelines in code validation will be reported about in a separate paper.  相似文献   

12.
An advanced startup procedure for the PIUS-type reactor has been developed. The procedure is related to the way to isolate the primary loops from the borated reactor pool by establishing stable hot/cold water interfaces in the so-called density lock sections. The procedure starts with accumulating preheated water in the high points of the steam-generator-side legs. Then, by restarting the reactor coolant pumps, the primary loops can be isolated from the pool as the primary loops reaches a uniformly higher temperature than the pool water. The additional components required for this procedure are only a low-pressure grade heater and a pump of small capacities. Since the isolation is achieved with the density locks left open, the core shutdown and cooling capabilities by means of the natural circulation of borated water are maintained in case of any abnormal events during startup. The feasibility and the predictability of this procedure were investigated by running an experiment in a scaled single-loop facility and conducting an analysis using a one-dimensional model. Both in the experiment and in the analysis. the primary loop was successfully isolated from the pool.  相似文献   

13.
This work has been performed in the framework of the OECD/NEA thermalhydraulic benchmark V1000CT-2. This benchmark is related to fluid mixing in the reactor vessel during a MSLB accident scenario in a VVER-1000 reactor. Coolant mixing in a VVER-1000 V320 reactor was investigated in plant experiments during the commissioning of the Unit 6 of the Kozloduy nuclear power plant. Non-uniform and asymmetric loop flow mixing in the reactor vessel has been observed in the event of symmetric main coolant pump operation. For certain flow conditions, the experimental evidence of an azimuthal shift of the main loop flows with respect to the cold leg axes (swirl) was found.Such asymmetric flow distribution was analyzed with the Trio_U code. Trio_U is a CFD code developed by the CEA Grenoble, aimed to supply an efficient computational tool to simulate transient thermalhydraulic turbulent flows encountered in nuclear systems. For the presented study, a LES approach was used to simulate turbulent mixing. Therefore, a very precise tetrahedral mesh with more than 10 million control volumes has been created.The Trio_U calculation has correctly reproduced the measured rotation of the flow when the CAD data of the constructed reactor pressure vessel where used. This is also true for the comparison of cold leg to assembly mixing coefficients. Using the design data, the calculated swirl was significantly underestimated. Due to this result, it might be possible to improve with CFD calculations the lower plenum flow mixing matrices which are usually used in system codes.  相似文献   

14.
使用STAR-CCM+软件对三环路压水堆压力容器上腔室流场进行了大规模、精细化三维数值模拟,并采用组分跟踪方法分别对157个燃料组件出口冷却剂流动进行计算,构造了一个具有3×157个元素的“上腔室交混矩阵”,用该矩阵即可定量、精确地描述冷却剂从堆芯流出后,经上腔室内交混并再分配到各热管道的复杂流动过程。研究发现堆芯流出的冷却剂在压力容器上腔室内的交混是并不充分的,径向上不同位置燃料组件流出的冷却剂会在上腔室同热管道的接口区域存在明显的对应关系,而燃料组件径向功率分布的差异必然导致热管道中冷却剂热分层现象的产生。   相似文献   

15.
The operation of a PIUS-type reactor requires controlling the reactor pump speed to keep stationary the hot/cold liquid interfaces between the reactor coolant and cold borated water. The dynamic response of the interface location to pump speed perturbations is analyzed for an experimental loop simulating a PIUS-type reactor. The transfer function between the pump speed and the interface location is obtained by perturbing and Laplace-transforming the one-dimensional fluid momentum equations. The analytical results agree well with experimental data taken from the same facility. It is shown that the magnitude of the phase lag in the response of the interface location, which needs to be considered in designing a pump speed controller, primarily depends on the fluid inertia in the loop, the density lock flow area, and the density difference between the simulated reactor coolant and borated water.  相似文献   

16.
为了研究压水堆因“直接安注”冷水注入压力容器下降环腔而导致的承压热冲击(PTS)热工水力问题,基于1:10比例模型,应用计算流体力学软件FLUENT5.4进行了紊流流动换热的数值模拟分析,同时进行了常压瞬态传热实验研究。针对下降环腔折算流速0.5 m/s,安注流速10m/s的典型工况,研究了安注水开启后下降环腔内的瞬态流动换热特性,数值模拟与实验结果吻合良好。考察了压力容器安注接管出口区环形焊缝区及堆芯段筒体中子强辐照区所承受的热冲击状况,基于稳态流动研究了下降环腔内流体混合特性及流动机理,为热冲击分析提供参考。  相似文献   

17.
The transport and mixing of a slug of deborated water in a lowered loop PWR is modeled by partitioning the volumes of the primary system according to chemical rector theory. Piping is modeled as plug flow volumes while the steam generator outlet plenum and the reactor coolant pumps are modeled as backmixed volumes. This simple approach provides a good representation of the transport and mixing phenomena outside the reactor vessel. The proposed methodology can be used to generate initial and boundary conditions for separate effects tests and CFD computations for the reactor vessel complex geometry. The decoupling of the ex-vessel primary system greatly enhances the resolution of boron dilution transient issue.  相似文献   

18.
The application of the laser induced fluorescence technique to the study of liquid mixing in the downcomer of a pressurized water reactor is presented. The scenario is that of a boron dilution event, in which a deborated slug is set in motion by the actuation of a reactor coolant pump. A separate effects test facility, built with transparent plexiglas, is used to conduct optical measurements of the slug mixing along its path to the core. The optical assembly is described and the conditions for the implementation of laser induced fluorescence as a quantitative measurement technique are discussed. Results from a slug injection experiment are shown which demonstrate the high-resolution capabilities of this procedure as applied to the study of liquid mixing in the complex geometry of a reactor vessel downcomer.  相似文献   

19.
双环路压水堆非对称入口条件下物理-热工特性研究   总被引:2,自引:0,他引:2  
双环路压水堆存在反应堆入口流量、温度不对称的非正常运行工况。本文建立了基于CFD方法的反应堆整体三维流场模型,并耦合中子动力学计算程序和RELAP5程序,对这种非对称入口条件下的反应堆物理-热工特性进行了数值模拟。结果表明:反应堆入口流量不对称会加剧堆芯入口流量分配的不均匀性,并进一步导致局部功率变化,对反应堆安全不利;在入口温度不对称的条件下,冷却剂在下腔室的混合非常不充分,并导致堆芯入口温度分布不均匀,引起局部功率变化较大,对反应堆安全不利。  相似文献   

20.
为了研究压水堆因安注冷水直接注入反应堆压力容器下降环腔而导致的承压热冲击(PTS)热工水力问题,基于1∶10比例模型,应用计算流体力学商用软件FLUENT5.4进行了紊流流动换热的数值模拟分析,同时进行了常压传热实验研究。针对下降环腔折算流速0.5m/s,安注流速10m/s的典型工况,研究了压力容器下降环腔的壁面换热特性。通过分析下降环腔内的流动及混合特性,从流动机理上解释了压力容器内壁上准重接触点附近换热强烈的现象,并指出壁面换热强弱与近壁流体紊流脉动动能密切相关,为热冲击分析提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号