首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two aspects of T cell differentiation in T cell receptor (TCR)-transgenic mice, the generation of an unusual population of CD4-CD8-TCR+ thymocytes and the absence of gamma delta cells, have been the focus of extensive investigation. To examine the basis for these phenomena, we investigated the effects of separate expression of a transgenic TCR alpha chain and a transgenic TCR beta chain on thymocyte differentiation. Our data indicate that expression of a transgenic TCR alpha chain causes thymocytes to differentiate into a CD4-CD8-TCR+ lineage at an early developmental stage, depleting the number of thymocytes that differentiate into the alpha beta lineage. Surprisingly, expression of the TCR alpha chain transgene is also associated with the development of T cell lymphosarcoma. In contrast, expression of the transgenic TCR beta chain causes immature T cells to accelerate differentiation into the alpha beta lineage and thus inhibits the generation of gamma delta cells. Our observations provide a model for understanding T cell differentiation in TCR-transgenic mice.  相似文献   

2.
The beta chain (p75) of the interleukin-2 (IL-2) receptor (IL-2R) is expressed on up to 5-7% of fetal thymocytes on day 16 of gestation, declining thereafter to a minute proportion of less than 1% around birth, and of 1-2% of adult thymocytes. A significant part of fetal IL-2R beta+ thymocytes are gamma delta cells. The precursor-progeny relationships of fetal IL-2R beta+ thymocytes to the alpha beta T cell lineage have not been previously studied, nor has their position within the developmental sequence been determined. Here we show that IL-2R beta is expressed on a subset of very immature cells, along with high amounts of Pgp1 and Fc gamma RII/III, partially preceding the expression of intracellular CD3 epsilon. IL-2-R beta disappears before expression of IL-2R alpha. IL-2R beta+ cells, purified by sorting on day 15 of gestation, efficiently reconstituted fetal thymic lobes depleted of lymphoid cells by treatment with desoxyguanosine. They developed into T cell receptor (TCR) alpha beta+, TCR gamma delta+, and CD4/CD8 double- and single-positive cells in similar proportions as did sorted IL-2R alpha+ day 15 fetal thymocytes. These data suggest that IL-2R beta expression marks a short period of very early thymocyte development, perhaps immediately after entry into the thymus.  相似文献   

3.
Treatment with DNA-damaging agents promotes rescue of V(D)J recombination, limited thymocyte differentiation, and development of thymic lymphomas in severe-combined immunodeficient (SCID) mice. One intriguing aspect of this system is that irradiation rescues rearrangements at the T cell receptor (TCR) beta, gamma and delta loci, but not at the TCR alpha locus. Current models posit that only those loci that are recombinationally active at the time of irradiation can be rescued. Here, we employ sensitive, semiquantitative ligation-mediated polymerase chain reaction assays to detect a specific class of recombination intermediates, hairpin coding ends, at the TCR alpha locus. We found that J alpha-coding ends are undetectable in unirradiated SCID thymocytes, but accumulate after irradiation at times coincident with the emergence of a CD4+ CD8+ thymocyte population. Coding joints produced by joining of these ends, however, are extremely rare. To test whether the presence of hairpin coding ends at TCR alpha is sufficient for irradiation-mediated rescue of coding joint formation, we administered a second dose of gamma-irradiation after abundant CD4+ CD8+ thymocytes and hairpin TCR alpha coding ends had accumulated. This treatment failed to stimulate rescue of TCR alpha coding joints. Thus, the presence of hairpin coding ends at the time of irradiation, while perhaps necessary, is not sufficient for rescue of V(D)J rearrangements. These results support a refined model for irradiation-mediated rescue of TCR rearrangements in SCID mice.  相似文献   

4.
5.
A rearranged T cell receptor (TCR) Valpha and Jalpha gene from a cytochrome c-specific T cell hybridoma was introduced into the genomic Jalpha region. The introduced TCR alpha chain gene is expressed in a majority of CD3 positive and CD4 CD8 double-negative immature thymocytes. However, only a few percent of the double-positive and single-positive thymocytes express this TCR alpha chain. This decrease is caused by a rearrangement of TCR alpha chain locus, which deletes the introduced TCR gene. Analysis of the mice carrying the introduced TCR alpha chain and the transgenic TCR beta chain from the original cytochrome c-specific T cell hybridoma revealed that positive selection efficiently rescues double-positive thymocytes from the loss of the introduced TCR alpha chain gene. In the mice with negatively selecting conditions, T cells expressing the introduced TCR alphabeta chains were deleted at the double-positive stage. However, a large number of thymocytes escape negative selection by using an endogenous TCR alpha chain created by secondary rearrangement maintaining normal thymocyte development. These results suggest that secondary rearrangements of the TCR alpha chain gene play an important role in the formation of the T cell repertoire.  相似文献   

6.
7.
We investigated the capacity of the Staphylococcal enterotoxin (SE) B, a superantigen (SAg) specific for TCR V beta domain, to modulate V beta 8+ thymocytes selection in adult mice. Thymocytes were collected at various time intervals after SEB injection (10 and 100 micrograms) and V beta 8+ modulation was analysed by three color flow cytometry. SEB failed to affect V beta 8+ thymocytes comprised in the less mature compartments, namely, CD4+8+ and CD4-CD8-, whereas it selectively affected V beta 8+CD4+8+ (downward modulation) and V beta 8+CD4-8+ thymocytes (upward modulation). The different response to SEB challenge between CD4+8- and CD4-8+ thymocytes appeared dependent on the CD4/MHC class II interaction, as V beta 8+CD4-8+ thymocytes carrying a transgenic CD4 molecule capable of interacting with MHC class II showed the same response of V beta 8+CD4+8- thymocytes. At variance with thymocytes, however, V beta 8+CD4+8- and V beta 8+CD4-8+ splenic T lymphocytes responded to SAg challenge in identical manner (upward modulation) highlighting the importance of maturation status and/or microenvironment in SAg response. V beta 8+ thymocytes remaining in the thymus were assessed for their capacity to respond to a SAg challenge. Thus, thymocytes were obtained at various time intervals after SEB injection and cultured in the presence of SEB or SEA, a Sag specific for V beta 10 as control. A reduced mitotic response to SEB but not to SEA was noticed irrespective of the number of V beta 8+ responding cells present in culture. It is concluded that SAgs affect TCR specific thymocytes by conditioning their redistribution and inducing an anergic status.  相似文献   

8.
Lymphocyte development requires the assembly of antigen receptor genes through the specialized process of V(D)J recombination. This process is initiated by cleavage at the junction between coding segments (V, D, and J) and the recombination signal sequences that border these segments, resulting in generation of double-strand break intermediates. We have used a two-dimensional gel system to characterize broken molecules arising from V(D)J recombination at the T-cell receptor (TCR) delta locus and have identified linear species excised by Ddelta1-Ddelta2 and V-Ddelta2 rearrangement in thymus DNA. Relatively few (approximately 10) V-Ddelta2-excised linear species were detected in DNA from fetal thymocytes. The sizes of these species corresponded to the estimated distances between Ddelta2 and the V gene segments utilized by gammadelta T cells and indicated that both Ddelta2-proximal and -distal V gene segments are targeted for V-Ddelta2 rearrangement. Similar-sized species were observed in DNA from thymocytes of scid mice in which T-cell development is arrested prior to TCR expression. Since previous studies suggest that the TCR alpha/delta locus encodes more than 100 V gene segments, our results indicate that a few select V gene segments are predominantly targeted for rearrangement to Ddelta2, and this primarily accounts for the restricted Vdelta gene repertoire of gammadelta T cells.  相似文献   

9.
Positive selection of CD4+CD8+ T cells to the CD4+CD8- helper and CD4- CD8+ cytotoxic lineages is a multistep process that involves complex regulation of coreceptor gene expression. By analyzing expression of a reporter gene in transgenic mice, we have identified a DNA segment, located between the murine CD8beta and CD8alpha genes, that has enhancer activity restricted to CD8 lineage cells. Remarkably, this enhancer functions in thymocytes undergoing positive selection to the CD4-CD8+ phenotype but not in immature double-positive thymocytes. The enhancer also functions in gut intraepithelial lymphocytes that express CD8alpha but not CD8beta, suggesting that it is specific for CD8alpha expression. The tight correlation between activation of this enhancer and the final step in positive selection has important implications for understanding the mechanism of lineage commitment in thymocytes.  相似文献   

10.
Effector functions of CD4-CD8- double negative (DN) alpha beta TCR+ cells were examined. Among mouse DN alpha beta TCR+ thymocytes, NK1.1+ cells expressing a canonical V alpha 14/J alpha 281 TCR but not NK1.1- cells produce IL-4 upon TCR cross-linking and IFN-gamma upon cross-linking of NK1.1 as well as TCR. Production of IL-4 but not IFN-gamma from DN alpha beta TCR+NK1.1+ cells was markedly suppressed by IL-2. Whereas V alpha 14/J alpha 281 TCR+ cells express NK1.1+, these cells are not the precursor of DN alpha beta TCR+NK1.1+CD16+B220+ large granular lymphocytes (LGL). IL-2 induces rapid proliferation and generation of NK1.1+ LGL from DN alpha beta TCR+NK1.1- but not from DN alpha beta TCR+NK1.1+ cells. LGL cells exhibit NK activity and produce IFN-gamma but not IL-4 upon cross-linking of surface TCR or NK1.1 molecules. In contrast to IL-2, IL-7 does not induce LGL cells or NK activity from DN alpha beta TCR+NK1.1- cells but induces the ability to produce high levels of IL-4 upon TCR cross-linking. Our results show that DN alpha beta TCR+ T cells have several distinct subpopulations, and that IL-2 and IL-7 differentially regulate the functions of DN alpha beta TCR+ T cells by inducing different types of effector cells.  相似文献   

11.
The proportion of CD4- CD8- double-negative (DN) alpha beta T cells is increased both in the thymus and in peripheral lymphoid organs of TCR alpha chain-transgenic mice. In this report we have characterized this T cell population to elucidate its relationship to alpha beta and gamma delta T cells. We show that the transgenic DN cells are phenotypically similar to gamma delta T cells but distinct from DN NK T cells. The precursors of DN cells have neither rearranged endogenous TCR alpha genes nor been negatively selected by the MIsa antigen, suggesting that they originate from a differentiation stage before the onset of TCR alpha chain rearrangements and CD4/CD8 gene expression. Neither in-frame V delta D delta J delta nor V gamma J gamma rearrangements are over-represented in this population. However, since peripheral gamma delta T cells with functional TCR beta gene rearrangements have been depleted in the transgenics, we propose that the transgenic DN population, at least partially, originates from the precursors of those cells. The present data lend support to the view that maturation signals to gamma delta lineage-committed precursors can be delivered via TCR alpha beta heterodimers.  相似文献   

12.
13.
After productive rearrangement of a TCR beta chain gene, CD4-8- double negative (DN) thymocytes express TCR beta polypeptide chains on the cell surface together with pre-T alpha and the CD3 complex forming the pre-TCR. Signals transmitted through the pre-TCR select TCR beta + DN thymocytes for further maturation to the CD4+8+ double positive stage, whereas DN cells that fail to generate a productive TCR beta gene rearrangement do not continue in development. This process is termed TCR beta chain selection. Although it is likely that differences between proliferation dynamics of TCR beta + and TCR beta-cells may play a role, the exact mechanisms of TCR beta chain selection have not been elucidated. We therefore studied the proliferation dynamics of TCR beta + and TCR beta-thymocytes during fetal development, i.e., when TCR beta chain selection takes place for the first time. We analyzed in situ accumulation of TCR beta + thymocytes by confocal microscopy, and determined cell cycle and division parameters of TCR beta + and TCR beta-populations by flow cytometry. About 600 TCR beta + cells/thymic lobe are generated by independent induction events between days of gestation (dg) 13.5, and 15.5. As of dg 14.5, most TCR beta + cells have entered S/G2 phase of cell cycle, followed by seven to eight rapid cell divisions in fetal thymic organ culture, suggesting a corresponding burst of nine cell divisions within 4 d in vivo. By dg 18.5, the division rate of TCR beta + cells has slowed down to less than 1/d. About three quarters of TCR beta-cells divide at a slow rate of 1/d on dg 14.5, the proportion of nondividing cells increasing to 50% within the following four d. From dg 16.5 onwards, TCR beta-cells, but not TCR beta + cells, contain a significant proportion of apoptotic cells. The results suggest that failure to become selected results in shutdown of proliferation and eventual programmed cell death of fetal TCR beta-cells. Positive selection of fetal TCR beta + cells is achieved by an increased rate of cell divisions lasting for approximately 4 d.  相似文献   

14.
Herein we report a patient with Beh?et's like syndrome, idiopathic CD4+ T-lymphocytopenia, opportunistic infections, and a large polyclonal population of TCR alpha beta + CD4- CD8- T cells. Microfluorimetric analysis of peripheral blood mononuclear cells revealed CD4+ T-cell counts of 10 +/- 5/mm3. The CD3+ T cells were 99% TCR alpha beta +, of which 74 +/- 5% were CD4- CD8-. No clonal populations were detected by southern analysis for T-cell receptor V beta gene rearrangements. No evidence of human immunodeficiency virus infection was present, although nocardia, candida, pneumocystis, cytomegalovirus, and herpes infections were documented. The concomitant presence of opportunistic infections and a large population of TCR alpha beta + CD4- CD8- T cells suggests a pathogenic association and an intense immune response to microbial lipid or lipoglycan antigens presented in the context of CD1 molecules. This case demonstrates the potential for idiopathic CD4+ T-lymphocytopenia to occur in Beh?et's-like syndrome with lethal consequences.  相似文献   

15.
We have characterized the function, phenotype, ontogenic development, and T cell receptor (TCR) repertoire of a subpopulation of gamma delta thymocytes, initially defined by expressing low levels of Thy-1, that represents around 5% and 30% of total gamma delta thymocytes in adult C57BL/6 and DBA/2 mice, respectively. Activation of FACS-sorted Thy-1dull gamma delta thymocytes from DBA/2 mice with anti-gamma delta monoclonal antibodies in the presence of interleukin-2 (IL-2) results in the secretion of high levels of several cytokines, including interferon-gamma (IFN-gamma), IL-4, IL-10, and IL-3. In contrast, only IFN-gamma was detected in parallel cultures of Thy-1bright gamma delta thymocytes. Virtually all Thy-1dull gamma delta thymocytes express high levels of CD44 and low levels of the heat-stable antigen and CD62 ligand, while around half of them express the NK1.1 marker. Thy-1dull gamma delta thymocytes are barely detectable in newborn animals, and their representation increases considerably during the first 2 weeks of postnatal life. The majority of Thy-1dull gamma delta thymocytes from DBA/2 mice express TCR encoded by the V gamma 1 gene and a novel V delta 6 gene named V delta 6.4. Sequence analysis of these functionally rearranged gamma and delta genes revealed highly restricted V delta-D delta-J delta junctions, and somewhat more diverse V gamma-J gamma junctions. We conclude that Thy-1dull gamma delta thymocytes exhibit properties that are equivalent to those of natural killer TCR alpha beta T cells. Both cell populations produce the same distinct pattern of cytokines upon activation, share a number of phenotypic markers originally defined for activated or memory T cells, display similar postnatal kinetics of appearance in the thymus and express a very restricted TCR repertoire.  相似文献   

16.
T cell repertoire selection processes involve intracellular signaling events generated through the TCR. The CD4 and CD8 coreceptor molecules can act as positive regulators of TCR signal transduction during these developmental processes. In this report, we have used TCR transgenic mice to determine whether TCR signaling can be modulated by the CD8 coreceptor molecule. These mice express on the majority of their T cells a TCR specific for the male (H-Y) Ag presented by the H-2Db MHC class I molecule. We show that CD4-CD8-, but not CD4-CD8+, thymocytes expressing the H-Y TCR responded with high intracellular calcium fluxes to TCR/CD3 stimulation without extensive receptor cross-linking. To examine the effects of CD8 expression on intracellular signaling responses in the CD4-CD8- cells, the H-Y TCR transgenic mice were mated with transgenic mice that constitutively expressed the CD8 alpha molecule on all T cells. The expression of the CD8 alpha alpha homodimer in the CD4-CD8-thymocytes led to impaired intracellular calcium responses and less efficient protein tyrosine phosphorylation of substrates after TCR engagement. In male H-2b H-Y transgenic mice, the majority of thymocytes have been deleted with the surviving cells expressing a high density of the transgenic TCR and exhibiting either a CD4-CD8- or CD4-CD8lo phenotype. It has been postulated that these cells escaped deletion by down-regulating the CD8 molecule. In the H-Y TCR/CD8 alpha double transgenic male mice, the CD4-CD8lo cells were completely eliminated as a result of CD8 alpha expression. However, the CD4-CD8- T cells were not deleted despite normal levels of the CD8 alpha transgene expression. These results suggest that the CD4-CD8- thymocytes may not be susceptible to the same deletional mechanisms as other thymocytes expressing TCR-alpha beta.  相似文献   

17.
18.
Following the recent realization that TCR beta transgenes can severely inhibit the rearrangement of endogenous Vbeta gene segments in the absence of pre-TCR alpha (pT alpha) chains, we tested whether the pre-TCR has an essential role in TCR beta allelic exclusion under more physiological conditions by analyzing TCR rearrangement in immature thymocytes by single-cell PCR. Our results in pT alpha+ mice are consistent with an ordered model of TCR beta rearrangement beginning on one allele and continuing on the other only when the first attempt is unsuccessful. By contrast, a higher proportion of thymocytes from pT alpha-/- mice exhibited two productive TCR beta alleles. Thus, the pre-TCR-independent suppression of rearrangement by TCR beta transgenes represents a transgene artifact, whereas under physiological conditions the pre-TCR is essential for allelic exclusion.  相似文献   

19.
We have investigated the role of common gamma chain (gamma c)-signaling pathways for the development of T cell receptor for antigen (TCR)-gamma/delta T cells. TCR-gamma/delta-bearing cells were absent from the adult thymus, spleen, and skin of gamma c-deficient (gamma c-) mice, whereas small numbers of thymocytes expressing low levels of TCR-gamma/delta were detected during fetal life. Recent reports have suggested that signaling via interleukin (IL)-7 plays a major role in facilitating TCR-gamma/delta development through induction of V-J (variable-joining) rearrangements at the TCR-gamma locus. In contrast, we detected clearly TCR-gamma rearrangements in fetal thymi from gamma c- mice (which fail to signal in response to IL-7) and reduced TCR-gamma rearrangements in adult gamma c thymi. No gross defects in TCR-delta or TCR-beta rearrangements were observed in gamma c- mice of any age. Introduction of productively rearranged TCR V gamma 1 or TCR V gamma 1/V delta 6 transgenes onto mice bearing the gamma c mutation did not restore TCR-gamma/delta development to normal levels suggesting that gamma c-dependent pathways provide additional signals to developing gamma/delta T cells other than for the recombination process. Bcl-2 levels in transgenic thymocytes from gamma c- mice were dramatically reduced compared to gamma c+ transgenic littermates. We favor the concept that gamma c-dependent receptors are required for the maintenance of TCR-gamma/delta cells and contribute to the completion of TCR-gamma rearrangements primarily by promoting survival of cells committed to the TCR-gamma/delta lineage.  相似文献   

20.
The functional receptor for the inflammatory cytokine IL-6 is composed of the ligand binding IL-6 receptor alpha chain (IL-6R alpha) and the signal transducing chain gp130, which is a shared component of multiple cytokine receptors. We analyzed the surface expression of gp130 and IL-6R alpha in thymocytes and peripheral T cells. While all thymocytes expressed gp130 throughout thymic maturation, they gained expression of IL-6R alpha at the CD4 or CD8 single-positive stage. Approximately 10-30% of the CD4-CD8+ and 40-50% of the CD4+CD8- thymocytes expressed IL-6R alpha. Within the CD4+CD8- population, the IL-6R alpha- subpopulation was cortisone sensitive, appeared immature according to the cell surface markers expressed and failed to proliferate after TCR cross-linking. Peripheral T cells were predominantly gp130+ and IL-6R alpha+, but down-regulated gp130 and IL-6R alpha expression upon TCR engagement in vitro and in vivo. Peripheral gp130low/-IL-6R alphalow/- T cells expressed surface markers characteristic of memory T cells. We show that gp130 and IL-6R alpha are expressed in a regulated manner in T cells, depending on the developmental and functional stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号