首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
真空带式干燥机的应用及研究进展   总被引:1,自引:0,他引:1  
真空带式干燥机(VBD)由干燥室、真空系统、布料机构、履带输送装置、切料机构、CIP清洗系统、PLC控制系统、加热和冷却系统以及卸料系统组成。干燥室内真空度为1 000—3 000 Pa,物料温度为30—60℃,适用于热敏及氧敏性物料的干燥,其传热方式为传导-辐射联合传热。目前有关真空带式干燥机干燥特性及传热传质机理的研究报导较少,难以指导工业设备的设计与生产,故而真空带式干燥机的设计主要是依靠经验,这使得其节能降耗的优势不能充分体现出来。真空带式干燥属于薄层干燥,文中综述了真空薄层干燥方面的一些研究文献,为真空带式干燥机的理论研究奠定了基础,以期研究者们进一步对真空带式干燥机的干燥特性及传热传质理论进行研究。  相似文献   

2.
This report reviews some fundamental and practical aspects of steam drying technologies based mainly on studies published in Japan. Steam drying kinetics, and some industrial technologies particularly for drying of foods, textiles and sludges are reviewed with focus on quality of dried material, drying time, dryer selection and energy recovery from steam dryer exhaust. For energy recovery, heat pump technologies are outlined along with characteristics of different types of steam compressors. A new process is proposed for steam drying; it combines a direct-indirect dryer followed by a direct steam dryer for internal moisture removal.  相似文献   

3.
ABSTRACT

This report reviews some fundamental and practical aspects of steam drying technologies based mainly on studies published in Japan. Steam drying kinetics, and some industrial technologies particularly for drying of foods, textiles and sludges are reviewed with focus on quality of dried material, drying time, dryer selection and energy recovery from steam dryer exhaust. For energy recovery, heat pump technologies are outlined along with characteristics of different types of steam compressors. A new process is proposed for steam drying; it combines a direct-indirect dryer followed by a direct steam dryer for internal moisture removal.  相似文献   

4.
低温真空连续干燥技术及其塔形设备研制初步探讨   总被引:1,自引:0,他引:1  
减少干燥加工过程物料内的热敏物质损失,降低干燥加工能耗及设备运行成本,降低设备制造成本,是干燥技术及设备的研究发展方向。低温真空连续干燥塔式设备成功使用了真空干燥技术、高气密性旋转阀进排物料、高换热面积与容积之比的干燥筒仓、筒仓中物料靠重力在换热管件之间自上而下的混合流动中被加热,从而实现了高质量、大产量、低能耗、低运行成本的干燥加工。  相似文献   

5.
G. Tribuzi 《Drying Technology》2014,32(9):1119-1124
A laboratory-scale freeze dryer was adapted to allow control of the heat supply and on-line monitoring of sample weight during drying under vacuum condition. Several tests were carried out to verify the reliability of the developed system. The system was also tested with 10-mm-thick banana slices, obtaining the fruit drying rate, at different sample holder plate temperatures including 20 and 30°C as well as an unheated plate. The system presented in this work represents a low-cost, flexible, and easy-to-assemble piece of equipment that allows the study and optimization of the freeze drying of foods.  相似文献   

6.
This paper reports on a theoretical and experimental investigation on the vacuum contact drying of agitated particulate material containing free as well as hygroscopic moisture. The penetration model is extended in order to account for the influence of bounded moisture on the drying rate. To this purpose an effective heat capacity of the bed, taking into account the sorption equilibrium, is introduced. Calculations are compared to measured drying rate curves. The measurements have been made in a disc dryer, using a molecular sieve as the model material.  相似文献   

7.
ABSTRACT

The results of industrial experimental research on penicillin drying in a vacuum drum dryer are discussed. It is shown that drying rate increases with increasing velocity of the drum rotation. Analytical calculations of heat exchange surface dependence on the hold-up of loaded material in a drum dryer are obtained.  相似文献   

8.
Atmospheric freeze drying (AFD) in a vibro-fluidized bed dryer coupled with an adsorbent and multimode heat input is proposed for dehydration of food products. An experimental setup was designed and built to permit simultaneous application of convection, conduction and radiation heat input to the drying material above its freezing point to ensure sublimation using a vortex tube to produce low temperature dry air. Comparison with AFD using fixed bed, fluidized bed dryer, traditional vacuum freeze drying and heat pump drying were carried out to investigate the viability of this new system. A two-layer moving boundary model was developed to simulate the drying kinetics and temperature scenario of thin slab product. Fairly good agreement was found between the predicted values and the experimental data. Finally a three-dimensional (3D) CFD simulation for a vortex tube is carried out to capture the highly swirling compressible flow behavior and to gain basic understanding of temperature separation process. An experimental setup was built to validate the simulation results.  相似文献   

9.
An overall system model for a countercurrent rotary dryer has been developed with the ullimale aim of assessing controller pairings in these dryers. This model is based on heat and mass balances within dryer regions combined with two subsidiary models, one describing the equipment (which determines particle transport and heat transfer)and the other describing the behaviour of the material (the drying kinetics). Six partial differential equations have been set up to evaluate six state variables: solids moisture content, solids temperature, gas humidity, gas temperature, solids holdup and gas holdup as functions of time and rotary dryer length. A control-volume method has been used to reduce the six partial differential equations with respect to time and the length of the rotary dryer to six ordinary differential equations in time.

The drying model has been implemented in the SPEEDUP flowsheeting package (with FORTRAN subroutines) The model has been validated by fifteen experiments-in a pilot scale countercurrent-flow rotary dryer (0.2m in diameter and 2m in length)  相似文献   

10.
The drying characteristics of sludge in a uniaxial vacuum disc dryer are numerically studied in the present study, and the results showed that the drying process of sludge includes three stages: the viscous stage, the sticky stage, and the granular stage. The influence of main parameters such as sludge feeding rate, heat source temperature, and rotating speed of the shaft on the drying process of sludge in the uniaxial vacuum disc dryer is analyzed. In order to optimize the drying efficiency of the dryer, a differential push-flow structure is proposed in this study, which provides different propulsion effects for the sludge in different drying stages. The differential push-flow is achieved by changing the number and angle of the push-flow blades on the discs. Compared with the dryer before optimization, the dryer with optimized differential push-flow structure has better performance.  相似文献   

11.
Simulation of the heat pump cycle and the drying process has been carried out to obtain the design parameters of the dryer. The analysis indicates that a specific moisture extraction rate (SMER) greater than 3.4 kg/kWh can be obtained. A box-type heat pump dryer has been developed and investigated for the performance of drying of shredded radish. Heat pump drying took 1.0–1.5 times longer than hot air drying. However, the heat pump dryer showed considerable improvement in energy savings. The SMER of the heat pump dryer was about three times higher than that of the hot air dryer.  相似文献   

12.
Low-pressure superheated steam drying (LPSSD) has recently been applied to drying of various heat-sensitive foods and bioproducts with success. Several studies have shown that the quality of LPSSD-dried products is superior to that obtained using conventional hot air or vacuum drying. However, drying time and energy consumption for LPSSD is generally greater than that for vacuum drying. Therefore, it is necessary to examine different methodologies to improve the energy efficiency of LPSSD. An intermittent drying scheme is one possible method to reduce the energy consumption of the process while maintaining the desired product quality. In this study, the effect of intermittent supply of energy (through an electric heater and steam injection to the dryer) and vacuum (through the use of a vacuum pump) at various intermittency values or on:off periods (10:5, 10:10 and 10:20 min in the case of intermittent supply of energy and 5:0, 5:5, and 5:10 min in the case of intermittent supply of vacuum) at the on-period setting temperatures of 70, 80, and 90°C on the drying kinetics and heat transfer behavior of the drying samples (banana chips) was studied. The effects of these intermittent drying schemes and conditions on the quality parameters of dried banana chips; i.e., color, shrinkage, texture, and ascorbic acid retention, were also studied. Finally, the energy consumption values for intermittent LPSSD and vacuum drying were monitored through the effective (or net) drying time at various intermittent drying conditions and compared with those using continuous LPSSD and vacuum drying.  相似文献   

13.
ABSTRACT

An overall system model for a countercurrent rotary dryer has been developed with the ullimale aim of assessing controller pairings in these dryers. This model is based on heat and mass balances within dryer regions combined with two subsidiary models, one describing the equipment (which determines particle transport and heat transfer)and the other describing the behaviour of the material (the drying kinetics). Six partial differential equations have been set up to evaluate six state variables: solids moisture content, solids temperature, gas humidity, gas temperature, solids holdup and gas holdup as functions of time and rotary dryer length. A control-volume method has been used to reduce the six partial differential equations with respect to time and the length of the rotary dryer to six ordinary differential equations in time.

The drying model has been implemented in the SPEEDUP flowsheeting package (with FORTRAN subroutines) The model has been validated by fifteen experiments-in a pilot scale countercurrent-flow rotary dryer (0.2m in diameter and 2m in length)  相似文献   

14.
It is well known in the drying of paper that it is possible reduce the size of the dryer section and/or increase the drying capacity by using vacuum. Furthermore a smaller dryer section contributes to a decrease in the energy losses. However, the use of Minton vacuum dryers in the late 20's was never really successful. Especially with increasing machine speeds maintenance became a problem.

Vacuum drying leads to an improvement in the optical pro- perties of papers made from mechanical pulps. Some physical properties such as softness and porosity may also be improved. When the paper is pressed towards the hot surface under me- chanical pressure during vacuum drying a gain in mechanical properties can be achieved.

In the present investigation, the influence of heat transfer between the web and the hot surface as well as mechanical com-pression of the sheet during vacuum drying have been avoided by using an IR heat source. The results show that the main effect of vacuum is a reduced evaporation temperature. This allows the drying to reach its maximum rate faster. The lower temperature level during vacuum drying also makes cheaper energy sources avilable.  相似文献   

15.
This paper presents a novel type of dryer for experimentally evaluating the drying kinetics of seeded grapes. In the developed drying system, it has been particularly included an expanded-surface solar air collector, a solar air collector with phase-change material (PCM) and drying room with swirl element. An expanded-surface solar air collector has been used to achieve high heat transfer and turbulence effect whiles a solar air collector with PCM has been used to perform the drying process even after the sunset. On the other hand, the swirl elements have been located to give the swirl effect to air flow in drying room. These advantages make the proposed novel system a promising dryer in that lower moisture value and less drying time. The drying experiments have been carried out simultaneously both under natural conditions and by the dryer with swirl flow and without swirl flow at three different air velocities. The obtained moisture ratio values have been applied to six different moisture ratio models in the literature. The model having the highest correlation coefficient (R) and the lowest Chi-square (χ2) value has been determined as the most relevant one for each seeded grape drying status.  相似文献   

16.
This paper explores the influence of temperature and pressure on drying kinetics of 2-(3-benzoylphenil propionic acid) ketoprofen, in a vacuum dryer on laboratory scale, Experimentally determined relations between moisture content and drying rate vs time, were approximated with an exponential model. Model parameters were correlated with drying conditions (temperature, pressure) and defined by functions of their potentions.

From an energy balance of the process, a mathematical model for simulating dependence of sample temperature vs drying time, and moisture content of material, has been developed.

Simulation of the drying kinetics and sample temperature, by use of those functional dependencies shows good agreement with experimental results.  相似文献   

17.
S. Pang 《Drying Technology》2000,18(7):1433-1448
In the production of MDF, wet resinated fibre must be dried to its target moisture content, normally 9 to 11%, before compaction into a board by hot pressing. Fibre drying can be interpreted as an incorporated process involving gas-solid two phase-flow, inter-component transfer, and heat and mass transfer within the fibre. Based on these mechanisms, a mathematical model has been developed to simulate the MDF fibre drying process. From the model, fibre moisture content, air temperature and air humidity along the dryer length can be predicted and factors affecting the drying rate examined. The model can be employed to optimise drying conditions and to evaluate improvements in dryer design. A case study of drying improvement in reduction of dryer emissions and heat consumption is given to demonstrate the potential application of the developed dryer model.  相似文献   

18.
Atmospheric freeze drying (AFD) in a vibro-fluidized bed dryer coupled with an adsorbent and multimode heat input is proposed for dehydration of food products at lower cost than the traditional freeze-drying process under vacuum. The aim of this project is to study the proposed AFD system using a vortex tube to produce low-temperature dry air, an alternative for producing dried food products of high quality. An experimental setup was designed and built to permit simultaneous application of convection, conduction, and radiation heat input to the drying material above its freezing point to ensure sublimation. A parametric evaluation over a broad range of possible parameter values was carried out using cubic-shaped potato and carrot as model heat-sensitive products. The influence of various system parameters on drying kinetics, quality, and functional properties of the dried products (color, rehydration properties, and morphology) were investigated. Comparison between physical quality and drying characteristics of the AFD system with AFD using fixed bed, fluidized bed dryer, and also with traditional vacuum freeze drying were carried out to investigate the viability of this new system. Results indicate that proposed system is an alternative to reduce the process time as well as to maintain the product quality at lower cost.  相似文献   

19.
A triangular spouted-bed dryer has been designed as part of a hexagonal continuous dryer for paddy. In the triangular-bed dryer, the spout of drying air is placed in one corner of the drying chamber. Combining six triangular units with the spout located in the center of the dryer allows a continuous process and reduces energy consumption due to the reduction of heat losses. The current study focuses on the distribution of moisture and temperature in an individual triangular bed. Models of distribution have been developed in order to provide a better understanding of the phenomena and to help in scaling-up of the design.  相似文献   

20.
Atmospheric freeze drying (AFD) in a vibro-fluidized bed dryer coupled with an adsorbent and multimode heat input is proposed for dehydration of food products at lower cost than the traditional freeze-drying process under vacuum. The aim of this project is to study the proposed AFD system using a vortex tube to produce low-temperature dry air, an alternative for producing dried food products of high quality. An experimental setup was designed and built to permit simultaneous application of convection, conduction, and radiation heat input to the drying material above its freezing point to ensure sublimation. A parametric evaluation over a broad range of possible parameter values was carried out using cubic-shaped potato and carrot as model heat-sensitive products. The influence of various system parameters on drying kinetics, quality, and functional properties of the dried products (color, rehydration properties, and morphology) were investigated. Comparison between physical quality and drying characteristics of the AFD system with AFD using fixed bed, fluidized bed dryer, and also with traditional vacuum freeze drying were carried out to investigate the viability of this new system. Results indicate that proposed system is an alternative to reduce the process time as well as to maintain the product quality at lower cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号