首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead zirconate titanate (PZT) piezoelectric thin films have been prepared by sol-gel method to fabricate microcantilever arrays for nano-actuation with potential applications in the hard disk drives. In order to solve the silicon over-etching problem, which leads to a low production yield in the microcantilever fabrication process, a new fabrication process using DRIE etching of silicon from the front side of the silicon wafer has been developed. Silicon free membrane microcantilevers with PZT thin films of 1 μm in thickness have been successfully fabricated with almost 100% yield by this new process. Annealing temperature and time are critical to the preparation of the sol-gel PZT thin film. The fabrication process of microcantilever arrays in planar structure will be presented. Key issues on the fabrication of the cantilever are the compatible etching process of PZT thin film and the compensation of thin film stress in all layers to obtain a flat multi-layer structure.  相似文献   

2.
For developing freestanding piezoelectric microcantilevers with low resonant frequency, some critical mechanical considerations, especially cantilever bending, were given in this study. Two strategies, using piezoelectric thick films and adding a stress compensation layer, were calculationally analyzed for mitigating the cantilever bending, and then was applied for the fabrication of PZT freestanding microcantilevers. (100) oriented PZT thick films with the thickness of 6.93 μm were grown on the Pt/SiO2/Si substrate by chemical solution deposition (CSD), and the SiO2 layer with the thickness of 1.0 μm was kept under the PZT layer as a stress compensation layer of the freestanding microcantilevers. The freestanding microcantilevers fabricated with the micromachining process possessed the resonant frequency of 466.1 Hz, and demonstrated no obvious cantilever bending.  相似文献   

3.
The patterning technique of Pb(Zr, Ti)O3 (PZT) thin film is an essential process in device fabrication processes for application in microsensors and microactuators. In this paper, a novel pattern technique is proposed for PZT thin film by UV photolysis processes. PZT thin films were first spin coated on the substrate and exposed by UV light for photolysis step. The UV photolysis step defined exposed and unexposed area by mask, and the pattern will be transferred to PZT thin film. After photolysis, PZT films were placed in non-ionic surfactant to remove unexposed area. Finally, PZT films were sintered at 650 °C in the furnace for crystallization. Experimental results showed that remnant polarization of patterned PZT film by UV photolysis was 21.4 μc cm?2, which was compared to 17.24 μc cm?2 by hot plate prolysis. Coercive fields were 45 and 104 kV cm?1 by UV photolysis and hot plate prolysis, respectively. Dielectric loss was 0.027 by UV photolysis which was much smaller than 0.043 by hot plate prolysis. PZT thin films patterned by UV photolysis showed satisfactory geometries.  相似文献   

4.
A micromirror actuated by three piezoelectric microcantilevers is presented for optical data tracking of high-density storage application. The microcantilevers are actuated by 2.5-μm-thick lead zirconate titanate (PZT) films which are deposited on the silicon-based substrate by a compatible sol–gel route. The X-ray diffraction result shows that the PZT film is perovskite structure and has a typical good ferroelectric loop. The quasi-static displacement of the mirror plate increases linearly with increasing the driving voltage and the tracking resolution on disk is as high as 8 nm/V. The micromirror also provides a high bandwidth of about 21 kHz, which is high enough to support the optical data tracking of future high-density storage.  相似文献   

5.
This study presents the design, fabrication and possible applications in liquid density sensing and biosensing of a flexure plate wave (FPW) resonator using sol–gel-derived lead zirconate titanate (PZT) thin films. The resonator has a two-port structure with a reflecting grating on a composite membrane of PZT and SiNx. The design of the reflecting grating is derived from a SAW resonator model using COM theory to generate a sharp resonant peak. A comparison between the theoretical mass and the viscosity effects reveals the applications and the constraints of the proposed device in liquid sensing. Multiple coatings of sol–gel-derived PZT films are employed because of the cost advantage and the strong electromechanical coupling effect over other piezoelectric films. Issues of fabrication of the proposed material structure are addressed. Theoretical estimates of the mass and the viscosity effects are compared with the experimental values. The resonant frequency relates quite linearly to the density of low-viscosity liquids, revealing the feasibility of the proposed device. An erratum to this article can be found at  相似文献   

6.
We have developed a titanium (Ti)-based piezoelectric microelectromechanical systems scanner driven by a Pb(Zr, Ti)O3 (PZT) thin film for the development of laser scanning displays. The 2-μm-thick PZT thin film was directly deposited on a 50-μm-thick Ti substrate by radio frequency magnetron sputtering. Prior to PZT deposition, the Ti substrate was microfabricated into the shape of a horizontal scanner by wet etching; therefore, we could fabricate a piezoelectric microactuator without using the photolithography process. We confirmed the growth of the polycrystalline PZT film with perovskite structures on the Ti substrate. We achieved an optical scanning angle of 22° at a resonant frequency of 25.4?kHz using a driving voltage of 20?V pp. These horizontal scanning properties can be applicable for laser displays.  相似文献   

7.
In this study, we report piezoelectric microactuators composed of Pb(Zr,Ti)O3 (PZT) films for low-voltage RF-MEMS switches. In order to realize a flat beam shape as well as a large displacement, we have adopted an X-shaped connector at the center of the beam. Finite element method (FEM) simulation indicates that the bending motion of the beam is almost same as two connected cantilevers, and the maximum displacement reaches 3.2 μm/5 V. To fabricate the microactuators, piezoelectric PZT films were deposited on Si substrates using rf-sputtering and microfabricated into the PZT/Cr unimorph actuators of 800 μm in length and 200 μm in width, respectively. Although the X-shaped connector effectively releases the stress of the multilayered beam so that the beam shape is almost flat, small residual stress caused slight concave curvature along the width. The displacement at the center of the beam was measured using a laser Doppler vibrometer. The measurement revealed that the displacement was 0.5 μm/5 V which was lower than the FEM result. The reduction of the displacement is attributed to the increase of the stiffness of the beam due to the concave curvature of the beam width.  相似文献   

8.
The fabrication using silicon micromachining and characterization of an acoustic Lamb wave actuator is presented. The intended use of the device is for mass transport and sensor applications. The device consists of dual interdigitated transducers patterned on a thin-film composite membrane of silicon nitride, platinum, and a sol-gel-derived piezoelectric ceramic (PZT) thin film. The acoustic properties of the device are presented along with preliminary applications to mechanical transport and liquid delivery systems. Improved acoustic signals and improved mass transport are achieved with PZT over present Lamb wave devices utilizing ZnO or AlN as the piezoelectric transducer  相似文献   

9.
The CO2 laser ablation is a common technique for patterning the microchannels and holes used in microfluidic devices. However, the ablation process frequently results in an accumulation of resolidified material around the rims of the ablated features and a clogging of the base of the microchannel. In the article, these problems are resolved by means of a proposed metal-film-protected CO2 laser ablation technique. In the approach, the substrate is patterned with a thin metallic mask prior to the ablation process and the mask is then stripped away once the ablation process is complete. The feasibility of the proposed approach is demonstrated by fabricating two micromixers with Y-shaped and T-shaped microchannels, respectively. It shows that for a designed channel width of 100 μm, the metallic mask reduces the ablated channel width from 268 to 103 μm. Moreover, the bulge height around the rims of the channel is reduced from 8.3 to <0.2 μm. Finally, the metallic mask also prevents clogging in the intersection regions of the two devices. The experimental mixing results obtained using red and green pigment dyes confirm the practical feasibility of the proposed approach.  相似文献   

10.
The design, fabrication and measuring of piezoelectric micromachined ultrasonic transducers (pMUTs), including the deposition and patterning of PZT films, was investigated. The (100) preferential orientation of PZT film have been deposited on Pt/Ti/SiO2/Si (100) substrates by modified sol–gel method. PZT film and Pt/Ti electrode were patterned by novel lift-off using ZnO as a sacrificial layer avoiding shortcomings of dry and wet etching methods. pMUT elements have been fabricated by an improved silicon micromachining process and their properties were also characterized. As measured results, the pMUT tends to operate in a standard plate-mode. The receive sensitivity and transmit sensitivity of pMUT element whose active area only has 0.25 mm2 are ?218 dB (ref. 1 V/μPa) and 139 dB (ref. 1 μPa/V), respectively.  相似文献   

11.
A simple microfabrication process to make an uncooled aluminum/silicon dioxide bi-material microcantilever infrared (IR) detector using silicon bulk micromachining technology is presented in this work. This detector is based on high banding of the microcantilever due to the large dissimilar in thermal expansion coefficients between the two materials. It consists of a 1 μm SiO2 layer deposited by 200 nm thin Al layer. Since no sacrificial layer is used in this process, complexity related to releasing sacrificial layer is avoided. Moreover Al is protected in Si etchant using dual-doped tetramethyl ammonium hydroxide. The other advantage of this process is that only three masks are used with four photolithography process. Thermal and thermal mechanical behaviors of this structure are obtained using finite element analysis, and the maximum temperature and displacement at the end of cantilever at 100 pW/μm2 absorbed IR power density on top surface are 7.82°K and 1.924 μm, respectively.  相似文献   

12.
A submicron-scale surface acoustic wave (SAW) resonator fabricated by high-aspect-ratio X-ray lithography (XRL) and metal lift-off that operates at microwave frequencies is presented. We demonstrate that XRL is especially well suited for SAW device templating, as long submicron-scale interdigitated transducer structures can be batch patterned with excellent structure quality. 0.4–2.0 μm thick PMMA layers were structured by X-ray lithography shadow projection using silicon nitride-based X-ray masks. Structures with a critical lateral feature size of down to 200–700 nm were processed. The polymer structures served as templates in a subsequent aluminum lift-off process. The metal electrodes were successfully tested as SAW resonators for high frequency applications, e.g. around 1.3 GHz, using calibrated 1-port RF wafer probing measurements. Compared with standard fabrication techniques, the high structure quality of submicron-scale polymer templates made of unusually thick PMMA layers offers additional possibilities to fabricate thicker metal transducers.  相似文献   

13.

This present work reports on the study of controllable aluminium doped zinc oxide (AZO) patterning by chemical etching for MEMS application. The AZO thin film was prepared by RF magnetron sputtering as it is capable of producing uniform thin film at high deposition rates. X-Ray diffraction (XRD) and atomic force microscopy (AFM) characterization were done to characterize AZO thin film. The sputtered AZO thin film shows c-axis (002) orientation, low surface roughness and high crystalline quality. To pattern AZO thin film for MEMS application, wet etching was chosen due to its ease of processing with few controlling parameters. Four etching solutions were used namely: 10 % Nitric acid, 10 % Phosphoric acid, 10 % Acetic acid and Molybdenum etch solutions. For the first time, chemical etching using Molybdenum etch that consist of a mixture of CH3COOH, HNO3 and H3PO4 was characterized and reported. The effect of these acidic solutions on the undercut etching, vertical and lateral etch rate were studied. The etched AZO were characterized by scanning electron microscopy (SEM) and stylus profilometer. The investigations showed that the Molybdenum etch has the lowest undercut etching of 7.11 µm, and is highly effective in terms of lateral and vertical etching with an etch ratio of 1.30. Successful fine patterning of AZO thin films was demonstrated at device level on a surface acoustic wave resonator fabricated in 0.35 μm CMOS technology. The AZO thin film acts as the piezoelectric thin film for acoustic wave generation. Patterning of the AZO thin film is necessary for access to measurement probe pads. The working acoustic resonator showed resonance peak at 1.044 GHz at 45.28 dB insertion loss indicating that the proposed Molybdenum etch method does not adversely affect the device’s operating characteristics.

  相似文献   

14.
A novel movable electrode is demonstrated to realize deep sub-micrometer resonator-to-electrode gap. This design is based on SOI progress for better reducing the motional impedance. The movable structure contains two main beams, which can be actuated by DC voltage to realize lock-up. After the lock-up process, the DC voltage could be released, so this lock-up progress only needs to be implemented once and can be accomplished before encapsulation. The DC bias voltage for the resonator is thus reduced for better application. In order to examine the improvement of motional impedance using this structure, a 70 MHz lame-mode square resonator is employed in this study. The resonator-to-electrode gap is reduced from 1.05 μm to 50 nm, thus brings about a 280 Ω motional impedance, which is 157,000× smaller than that before the actuation of the movable structure. In addition, the capability to be realized in conventional SOI progress facilitates the fabrication process as well as the realization of high yield.  相似文献   

15.
The roller hot embossing is an efficient process of manufacture in which patterns are continuously transcribed on film, etc. Recently, the application of the embossing roll to the manufacturing processes of micro parts is paid attention. In this paper, we examined the development of the embossing roll with patterns of micron level and we tried to make the embossing roll mold by using the LIGA process. In this study, instead of producing embossing patterns directly on the roll surface, we fabricated a flexible thin mold with micro-patterns, which was then wrapped onto a cylinder to form an embossing roll, and tested the soft-mold roller hot embossing method. First, by optimizing UV exposure conditions of UV lithography, we prepared a resist pattern of numerous dots with a diameter of 10 μm, a sag height of 8 μm and a pitch of 20 μm. By Ni-electroforming this pattern, a 50 μm-thick thin mold was successfully fabricated. The 50 μm-thick mold was then wrapped onto a cylinder to form an embossing roll. In the roller hot embossing process, the 10 μm-diameter dot shape was successfully replicated on PET sheets.  相似文献   

16.
This paper describes a new type hydrogen sulfide (H2S) gas sensor using ionic liquid (IL). In this sensor, a reservoir for the IL was integrated on a surface acoustic wave (SAW) resonator. The IL serves as an absorber for H2S gas. Mass change due to this absorption is detected as shift in the resonant frequency. In this study, we fabricated and demonstrated the sensor using the lithium niobate (LiNbO3) SAW resonator with the resonant frequency of 38 MHz. The integrated reservoir was filled by the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]-[PF6]). As an experimental result, we observed the linear correlation between the frequency-shift and the exposure time of the sensor to the H2S gas.  相似文献   

17.
In this paper, we present the design and modeling of the electrical–mechanical behavior of a novel microsensor to detect magnetic fields in two orthogonal directions (2D). This microsensor uses a simple silicon resonant structure and a Wheatstone bridge with small p-type piezoresistors (10 × 4 × 1 μm) to improve the microsensor resolution. The resonant structure has two double-clamped silicon beams (1000 × 28 × 5 μm) and an aluminum loop (1 μm thickness). The microsensor design allows important advantages such as small size, compact structure, easy operation and signal processing, and high resolution. In addition, the microsensor design is suitable to fabricate using silicon on insulator (SOI) wafers in a standard bulk micromachining process. An analytical model is developed to predict the first bending resonant frequency of the microsensor structure using Macaulay and Rayleigh methods, as well as the Euler–Bernoulli beam theory. Air and intrinsic damping sources of the microsensor structure are considered for its electrical–mechanical response. The mechanical behavior of the microsensor is studied using finite element models (FEMs). For 10 mA of root mean square (RMS) excitation current and 10 Pa air pressure, this microsensor has a linear electrical response, a fundamental bending resonant frequency of 52,163 Hz, and a high theoretical resolution of 160 pT.  相似文献   

18.
This paper proposes a design for the linear state feedback control of the dual-actuator system, which is a dual-input single-output system for the high-precision manufacturing stage. The proposed control prevents saturation or reduces the unnecessary movement of the piezoelectric (PZT) actuator at the transient response by tracking the error between the estimated and actual positions of the coarse-actuator system at each control sample. Also, a new mechanism of the single-stage dual actuator is introduced. The axes of the stepper motor and the PZT actuator are co-axial. The coupling effects between the stepper motor and the PZT actuator are considered. Both the simulation and experiment results show that the proposed algorithm successfully prevents unwanted motions of the PZT actuator at the transient response. The experiment results show that the settling time and overshoot were enhanced by 45.7 and 95.9 %, respectively, for the proposed algorithm when the reference distance was 10 μm, which exceeds the stroke of the PZT actuator.  相似文献   

19.
 Micromachined active sliders based on head load/unload on demand systems is an interesting concept technology for ultra-high magnetic recording density of more than 100 Gb/in2. The active sliders that we proposed use PZT thin films as a microactuator and control the slider flying height of less than 10 nm. It is necessary to develop high performance microactuators in order to achieve active sliders operating at very low applied voltage. This paper describes the development of novel PZT thin films for active sliders. The sol–gel fabrication process for PZT thin films is developed and the fundamental characteristics for the PZT thin films are investigated. It is confirmed that the PZT thin films have good ferroelectric properties. Furthermore, novel thin film microactuators are proposed. The feature is that the sol–gel PZT thin films (thickness 540 nm) are deposited on the sputtered PZT thin films (thickness 300 nm) fabricated on bottom Pt/Ti electrodes. Therefore, the novel thin films consist of a thermal SiO2 layer and the sputtered and sol–gel PZT thin films layers sandwiched with upper Pt and bottom Pt/Ti electrodes on a Si slider material. Fabricating the diaphragm microactuator, the piezoelectric properties for the novel composite PZT thin films are studied. As a result, the piezoelectric strain constant d 31 for the novel PZT thin films is identified to be 130 × 10−12 m/V. This value is higher than conventional monolithic PZT thin films and it is found that the novel composite PZT thin films have the good piezoelectric properties. This suggests the feasibility of realizing active sliders operating at lower voltage under about 10 V. Received: 22 June 2001/Accepted: 17 October 2001  相似文献   

20.
In this study, we fabricated multilayer ceramics (MLCs) composed of multilayered Pb(Zr,Ti)O3 (PZT) piezoelectric thin films with internal electrodes and evaluated their dielectric and piezoelectric properties. The stack of PZT ferroelectric layers (550 nm) and SrRuO3 (SRO, 80 nm) electrodes were alternatively deposited on Pt/Ti-coated silicon-on-insulator substrates by radio-frequency magnetron sputtering. The MLCs composed of one, three, and five PZT layers were fabricated by the alternate sputtering deposition of PZT ferroelectric layers and SRO electrodes through the movable shadow mask. The capacitances of MLCs were proportionally increased with the number of PZT layers, while their relative dielectric constants were almost same among the each MLC. The MLCs exhibited symmetric and saturated PE hysteresis loops similar to the conventional PZT thin films. We estimated that the piezoelectric properties of MLCs by FEM simulation, and confirmed that the effective transverse piezoelectric coefficients (d 31,eff ) increased with the number of PZT layers. The piezoelectric coefficients calculated to be d 31,eff  = ?2964 pC/N at 25 PZT layers, which is much higher than those of conventional single-layer piezoelectric thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号