首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用反相乳液法,以水溶性聚酰胺酸三乙胺盐(PAAS)、正硅酸乙酯(TEOS)为前驱体,通过溶胶凝胶法制备了具有介孔结构的聚酰亚胺(PI)/SiO_2多孔复合微球。将PAAS水溶液和TEOS水解液的混合溶液在液体石蜡中形成反相乳液,TEOS经水解缩合形成无机三维骨架,通过化学酰亚胺化使复合体系中的PAAS转变为PI,成功制备了含有介孔结构的PI/SiO_2多孔复合微球。研究发现,随着SiO_2含量的增加,复合微球的规整性不断提高,其比表面积由20.5 m~2/g增加至521.8 m~2/g。同时发现,调节TEOS水解液的pH值,微球的比表面积也会发生相应的变化。此外,热重分析结果显示该复合微球的热分解温度超过500℃,表明其具有优异的热稳定性。  相似文献   

2.
以SiO_(2)气凝胶为支撑材料,通过物理吸附法制备定形SiO_(2)气凝胶基复合相变材料(PCCs),再利用密封盒进行二次封装。探究SiO_(2)气凝胶与相变材料的最佳配比,并对复合相变材料的微观结构、化学成分、孔结构、相变特性、热可靠性、定形能力和隔热性能进行表征。结果表明:含有质量分数为80%相变材料的SiO_(2)气凝胶复合相变材料(LS-80)具有最佳吸附比,并且在相变过程中显示了良好的定形能力,其熔点和熔融潜热分别为-15.6℃和170.2 J/g;同时SiO_(2)气凝胶的成功吸附使得LS-80的比表面积、孔径和孔容大小下降至59 m^(2)/g,13 nm和0.2 cm^(3)/g;20次冷热循环后,封装后相变材料的相变潜热减少了13.4%,而SL-80只减少了2.8%,表现出良好的热可靠性能;SiO_(2)气凝胶的添加使得复合相变材料导热系数降低,隔热能力增强。该结果为SiO_(2)气凝胶复合相变材料在冷链物流领域的应用提供了实验依据。  相似文献   

3.
以工业水玻璃为硅源,采用LiOH、NaOH、KOH、NH_3·H_2O为催化剂,通过溶胶-凝胶法常压环境干燥疏水改性制备SiO_2气凝胶。利用FT-IR、TG-DTA、SEM以及BET对气凝胶的化学结构、热稳定性、微观形貌及比表面积和孔结构进行了表征测试。结果表明,碱性催化剂促使SiO_2溶胶-凝胶转化时间急剧缩短,由5840min缩短到30min左右;同时热稳定性明显提高,热分解温度由375℃上升到400℃以上。碱性金属离子催化作用下SiO_2气凝胶在1.7和32nm处呈现双孔结构,孔容保持在2.5~3.5cm3/g,说明在弱酸性环境下碱金属离子使的SiO_2气凝胶在保持三维网状结构的同时加大了SiO_2纳米粒子之间的接触面积。  相似文献   

4.
采用纤维素为原料,氢氧化锂(LiOH)/尿素/水(H_2O)体系为溶剂,硅酸钠(Na_2SiO_3)为硅源,在纤维素凝胶骨架中原位合成纳米二氧化硅(SiO_2),制得SiO_2/纤维素复合气凝胶,并考察了SiO_2对其结构和性能的影响。结果表明,SiO_2/纤维素复合气凝胶不仅保持了纯纤维素气凝胶的骨架结构,同时SiO_2显著增加了气凝胶的比表面积,改善了力学性能,在SiO_2用量为47.27%(wt,质量分数)条件下,SiO_2/纤维素复合气凝胶的比表面积高达528m~2/g,压缩模量为6.18MPa。  相似文献   

5.
吴鸣  高跃  王旺成  孙红梅  彭啸  吴燕 《化工新型材料》2019,47(9):155-160,165
以硅溶胶为原料,通过W/O乳液法结合溶胶-凝胶过程制备SiO_2气凝胶微球。在硅溶胶中掺杂氧化石墨烯(GO),经过洗涤、溶剂替换、表面改性、真空干燥制备出掺杂量不同的氧化石墨烯/SiO_2复合气凝胶微球(GOS-CAMs),最后经高温处理得到石墨烯/SiO_2复合气凝胶微球(GS-CAMs)。经过堆密度、氮气吸附-脱附、扫描电子显微镜及傅里叶变换红外光谱等测试,选择GO掺杂量为0.4%(wt,质量分数,下同)的GS-CAMs,分别与石墨烯、SiO_2气凝胶微球进行对比,研究其在不同温度下对水溶液中不同浓度甲苯的吸附性能,并从吸附热力学、吸附动力学探讨其吸附机理。结果表明:掺杂量为0.4%的GO制备的GS-CAMs的综合性能最好,其松散堆密度为300kg/m~3,比表面积、平均孔径分别为328m~2/g、31.23nm;与纯SiO_2气凝胶微球相比,GS-CAMs的比表面积、孔径明显增加;GS-CAMs对不同温度下不同浓度甲苯水溶液的最大饱和吸附量为211mg/g,约为SiO_2气凝胶微球、石墨烯吸附量的1.2倍、1.6倍。吸附过程符合Langmuir等温吸附模型和准二级动力学模型。  相似文献   

6.
研究了采用溶胶-凝胶法制备SiO_2/TiO_2复合材料,利用XRD、FT-IR、SEM及比表面分析法等对复合材料的形貌、晶型等进行了表征。结果表明:SiO_2/TiO_2为球形介孔材料且有Si—O—Ti键的形成;一定量的SiO_2掺杂和材料的介孔结构,大大提高了复合材料的比表面积;所制备SiO_2/TiO_2复合光催化剂对亚甲基蓝的光催化降解实验结果表明,SiO_2/TiO_2复合材料具有优异的吸附及光催化降解性能。  相似文献   

7.
李威  叶卫平  程旭东  杨帆  崔俊平 《材料导报》2015,29(22):72-74, 95
以正硅酸乙酯(TEOS)为前驱体,复合纤维为增强相,采用溶胶-凝胶法和常压干燥技术制备了纤维增强疏水SiO_2气凝胶复合材料。利用傅里叶变换红外光谱仪、扫描电子显微镜、比表面积分析仪等手段对气凝胶的化学组成、形貌及结构等进行了分析,并且测量了样品的密度和抗折强度。结果表明:经常压干燥制备的SiO_2气凝胶复合材料加工成块性较好,密度在0.27g/cm~3左右,比表面积达到878.544m~2/g;随着复合纤维的掺入,凝胶填充了纤维之间的大部分微米空隙,并与纤维形成了比较密实的结构,复合材料的抗折强度提高到了1.53 MPa,使得材料有较好的韧性,适用于不规则形状的隔热。  相似文献   

8.
CeO2-TiO2复合氧化物的制备及其表征   总被引:1,自引:0,他引:1  
本文以廉价的无机盐为原料,采用sol-gel法制备了Ce:Ti(摩尔比)为0.05~0.4:1之间的一系列CeO2-TiO2复合氧化物.利用物理吸附仪,XRD,TEM等手段对复合氧化物的织构和结构性质进行了表征.结果发现:采用无机盐-超临界流体干燥法可制备大孔、高比表面积的CeO2-TiO2复合氧化物,随着CeO2含量从5%增加到40%,复合氧化物的比表面积由67.3m2·g-1增加到219.4m2·g-1;物相由锐钛矿转变为无定形;粒体的粒径、形貌也随之变化,由颗粒状逐渐变为网络结构.而与超临界流体干燥得到的气凝胶相比;采用普通干燥法制备得到的复合氧化物具有较低的孔体积和比表面积,颗粒间团聚较严重,但无“孤岛”状大颗粒,晶相为无定型结构.  相似文献   

9.
以自组装方法制备的丝素蛋白(SF)微球为模板,采用溶胶-凝胶法直接在SF微球表面涂覆硅层,随后高温锻烧制备介孔二氧化硅(SiO_2)空心微球并研究了氨水用量对SF微球表面沉积SiO_2胶粒的影响。通过SEM表征显示,随着氨水用量的增加,SiO_2胶粒在SF微球表面的沉积量增大;SF/SiO_2复合微球锻烧后经TEM和比表面积测试表明,SiO_2微球具有良好的空腔结构,比表面积为92.127m~2/g,孔体积为0.477cm~3/g,孔径为4.56nm。研究证明,在没有添加任何表面活性剂或偶联剂条件下,SF能够诱导SiO_2胶粒沉积,为制备介孔SiO_2空心微球提供了一条简单有效的新途径。  相似文献   

10.
气凝胶具有三维纳米多孔网络结构,独特的结构使它具有低密度、高比表面积和高孔隙率等性质以及低热导率、低介电常数和低声传播速率等性能,在隔热、介电、隔声、催化、吸附等领域具有广阔的应用前景。然而,溶剂-凝胶法作为目前制备气凝胶最成熟、应用最广的技术,需要使用大量的有机溶剂,严苛而危险的超临界干燥工艺进一步推高了成本,限制了气凝胶的大规模工业化生产和应用,因此,降低成本和在常压干燥条件下制备高比表面积的块状气凝胶是气凝胶产业急需解决的问题。离子液体被称为21世纪的绿色溶剂,具有低蒸气压、低表面张力、高催化性和高溶解性等特殊性质。离子液体与气凝胶材料的发展几乎同步,但直到2000年两种材料才产生交集。离子液体作为模板剂具有微观结构导向作用,使纳米孔结构均一化,其不挥发性和低表面张力保证了老化和常压干燥过程中纳米孔结构不会因毛细管力而坍塌破坏,另外其催化作用可以缩短凝胶时间。因此,离子液体为常压干燥合成气凝胶提供了新的工艺路线。目前,有关借助离子液体制备SiO_2气凝胶、TiO_2气凝胶、SiO_2-TiO_2复合气凝胶、炭气凝胶等无机气凝胶的探索均已展开,其中制备SiO_2气凝胶的研究最多,涉及工艺、微观结构、掺杂和应用等方面。通过常压干燥可获得比表面积高达677m2/g的块状气凝胶,通过选用不同的离子液体还可以控制纳米孔的微观形貌,所得SiO_2气凝胶产物在电化学、生物、吸附等领域有较高的应用潜力。利用离子液体替代有机溶剂可以使得到的TiO_2气凝胶不经煅烧即含有锐钛矿相,通过金属原子Ag、Fe、Ge等掺杂改性,可进一步提高锐钛矿相的结晶度,提升其光催化性能。利用离子液体制得的SiO_2-TiO_2复合气凝胶具有一定强度和良好的光催化活性。此外,除在传统的溶胶-凝胶法中用作模板剂或催化剂外,离子液体还可作为新型的炭源用于制备炭气凝胶,即通过熔盐法高温炭化裂解离子液体"自上而下"直接制备。这种方法可以制备杂原子在原子水平上均匀分布的功能化炭气凝胶,无需制备有机气凝胶前驱物,极大缩短制备周期,并且炭气凝胶产物的比表面积相对更高,得到了科研界的广泛关注。本文介绍了离子液体在气凝胶材料合成过程中的作用原理,归纳了借助离子液体制备前述几种重要的无机气凝胶的国际研究状况。  相似文献   

11.
采用化学交联、溶胶-凝胶和表面改性的方法,制得疏水性聚酰亚胺(PI)增强SiO2气凝胶复合材料。以均苯四甲酸二酐(PMDA)和4’,4’-二氨基二苯醚(ODA)为聚合单体,3-氨丙基-三己氧基硅烷(APTES)为封端剂,合成APTES封端的聚酰亚胺,与正硅酸乙酯(TEOS)混合形成前驱体。采用酸碱两步催化凝胶、湿凝胶依次进行表面疏水改性、溶液置换及CO2超临界干燥,得到聚酰亚胺增强SiO2气凝胶复合材料样品。利用FTIR、SEM、比表面积测试仪、万能材料试验机、接触角分析仪等表征样品的化学组成、微观形貌、孔结构、力学性能及疏水性能等。结果表明:PI质量分数为6wt%的样品密度为0.124 g/cm3,比表面积为724 m2/g,平均孔径尺寸为14 nm,接触角为134°,抗压强度为0.295 MPa。20wt%含量的PI增强SiO2气凝胶样品抗压强度为0.556 MPa。  相似文献   

12.
以Cu片和1, 3, 5-苯三甲酸为原料,电化学法制备经典Cu-MOF材料Cu3(BTC)2(H2O)3,即HKUST-1,作为基底金属有机框架材料(MOFs),采用室温沉积法制备FeVO4/HKUST-1异质结复合材料,通过XRD、SEM、BET、UV-Vis DRS等对其晶体结构、形貌、比表面积、光吸收性能等进行了表征。结果表明:FeVO4与HKUST-1复合形成异质结后,有利于光生电子-空穴的产生和转移,对目标染料污染物罗丹明B(RhB)的降解性能显著增强。可见光照射120 min后,异质结体系中RhB的降解率可达93%,而单一FeVO4或HKUST-1体系中仅为12%和5%。此外,对材料的组成比例进行了优化,当FeVO4与HKUST-1摩尔比为1∶1时,制备的FeVO4/HKUST-1复合材料具有最佳的光催化性能。进一步,考察了其循环使用的稳定性,循环5次后对RhB的降解效率仍保持在90%以上,稳定性良好。   相似文献   

13.
采用具有丰富分级多孔结构的豆芽为模板,经水热法合成仿生形态的纳米CeO2/石墨烯催化剂。使用XRD、拉曼光谱(Raman)、TEM、场发射扫描电子显微镜(FESEM)、紫外-可见漫反射光谱(UV-Vis/DRS)、N2吸附-脱附仪和光解水制氢系统等分析表征手段对CeO2/石墨烯催化剂的结构、形貌及光催化性能进行分析。结果表明,所制备的CeO2/石墨烯光催化剂不仅继承了豆芽模板高孔隙率和大比表面积的特点,而且保持了豆芽的形态和微观特征。该催化剂是由约5.6 nm CeO2纳米晶与具有生物形态的仿生石墨烯片层结构结合而成。制得的CeO2/石墨烯复合材料内部存在大量由CeO2/石墨烯催化剂纳米颗粒堆积而成的纳米孔,其孔径集中分布于15~45 nm左右,这种微观结构使CeO2/石墨烯催化剂具有超大的比表面积,提高了催化剂对光生电子空穴对的捕获能力。由紫外-可见漫反射吸收光谱可知,CeO2/石墨烯复合材料的可见光利用率显著增强,光解水制氢效率6 h后可达到671 μmol(h · g)-1,远高于标样CeO2的51.67 μmol(h · g)-1。  相似文献   

14.
以AlCl3·6H2O为前驱体,采用离子交换工艺和溶胶-凝胶法,在正硅酸四乙酯(TEOS)乙醇溶液中浸泡实现Al2O3和SiO2的复合,经表面改性和常温常压干燥制备出低成本、无杂质离子、低热导率的Al2O3-SiO2复合气凝胶。探索了不同有机硅烷改性剂对Al2O3-SiO2复合气凝胶结构和隔热性能的影响。结果表明,在改性剂为三甲氧基甲基硅烷(MTMS),改性环境为中性(pH为7)时,Al2O3-SiO2复合气凝胶表现出最均匀的微观结构,SiO2和Al2O3主要以无定形形式存在。MTMS可有效减少Al2O3-SiO2湿凝胶表面的-OH基团,形成Si-O-Si和Al-O-Si基团。Al2O3-SiO2气凝胶比表面积和孔体积分别达到574 m2/g和2.3 cm3/g,热导率低至0.029 W(m·K)-1。以上研究为促进气凝胶材料在隔热领域的应用提供了支持。   相似文献   

15.
SiO2/TiO2复合气凝胶的孔道结构研究   总被引:1,自引:1,他引:0  
为了在常压干燥下制备高比表面积且具有多级孔道结构的SiO2/TiO2复合气凝胶,以正硅酸乙酯、钛酸丁酯为原料,利用低聚体聚合将分相平行引入到溶胶凝胶过程中,获得SiO2/TiO2醇凝胶,并通过溶剂替换技术实现气凝胶的常压干燥制备.不同硅钛比气凝胶的内部结构研究表明:合成的气凝胶是由纳米SiO2和TiO2颗粒分散复合而成的介孔块体,其中Ti—O—Ti、Si—O—Si和Ti—O—Si键相互交织.气凝胶的结构变化是分相与溶胶凝胶过程相互竞争的结果.Si含量能显著改善气凝胶的结构,当n(Ti)∶n(Si)为3∶1时,比表面积高达712.2 m2/g,平均孔径为3.36 nm;当n(Ti)∶n(Si)为1.5∶1时,复合气凝胶具有明显双连续孔道,比表面积高,同时孔状结构清晰.  相似文献   

16.
由于Bi2WO6半导体具有无毒、强氧化性、强可见光响应等特点,呈现出优异的光催化活性。然而,Bi2WO6具有比表面小和吸附能力差的缺点限制了其实际应用。利用凹凸棒黏土的强吸附性,通过调节水热反应温度和时间、凹凸棒黏土与Bi2WO6的质量比及前驱体溶液的pH值等条件制备凹凸棒/Bi2WO6光催化复合材料,并对其进行XRD、SEM、N2吸附-解吸和紫外-可见漫反射光谱(UV-vis DRS)等表征测试。研究表明,在180℃水热反应18 h、凹凸棒黏土与Bi2WO6的质量比为6%、凹凸棒/Bi2WO6光催化复合材料前驱体溶液的初始pH=1时,凹凸棒/Bi2WO6光催化复合材料具有3D纳米球状分层结构,且在可见光下对罗丹明B具有较好的光催化性能。   相似文献   

17.
研究了以α-Fe2O3、β-Fe2O3和γ-Fe2O3为催化剂的类Fenton试剂溶液氧化吸收NO的过程,分析了3种Fe2O3的晶相结构和表面性质对NO脱除效率的影响机理。脱硝性能测试结果表明:γ-Fe2O3的活性最好,在H2O2浓度为1.5 mol/L、催化剂浓度为20 mmol/L、pH值为5以及反应温度为55℃等条件下,γ-Fe2O3的脱硝率可达87.5%。机理研究表明:3种Fe2O3催化H2O2分解湿法脱除NO的反应发生在催化剂表面,反应过程中存在氧化还原循环,H2O2催化分解的主要产物是·OH。活性差异分析结果表明:Fe2O3的晶相结构和表面性质对NO的脱除效果具有显著的影响,γ-Fe2O3的活性最高是由于比表面积大、分散性高和表面的Fe2+含量更多,而β-Fe2O3的活性高于α-Fe2O3是由于表面的氧空位含量更多。  相似文献   

18.
采用简单易行的一锅溶剂热法原位合成CuFe2O4/纳米纤维素(CuFe2O4/CNC)磁性复合材料,并研究CuFe2O4/CMC磁性复合材料催化剂在NaBH4作用下催化还原4-硝基酚(4-NP)性能。结果表明:所制备的CuFe2O4/CNC磁性复合材料为单一尖晶石结构,具有超顺磁性,纳米颗粒尺寸约为10 nm,其饱和磁化强度为33.15 emu·g-1。与CuFe2O4纳米颗粒相比,CuFe2O4/CNC磁性复合材料的比表面积提高到89.9 m2·g-1(CuFe2O4纳米颗粒的比表面积为53.9 m2·g-1)。CNC有助于改善CuFe2O4的单分散性,且对4-NP的吸附作用能加快反应的传质速率。将CuFe2O4/CNC磁性复合材料用于催化还原4-NP,反应符合一级动力学特征;当CNC的添加量为0.2 g时,可以将4-NP(100 μL,0.005 mol·L-1)溶液在25 s催化还原完全,表现出优异的反应活性。催化剂循环使用5次后,对4-NP的转化率仍能保持90%以上。   相似文献   

19.
以柱撑式环氧树脂大孔聚合物为模板,制备宏观尺寸的大孔-介孔SiO2;以其为载体,通过钛酸四丁酯原位水解和高温焙烧制得大孔-介孔TiO2纳米晶-SiO2复合材料。应用SEM、TEM、XRD、FTIR和N2吸附-脱附法对材料进行表征。以偶氮荧光桃红为模拟污染物,用氙灯模拟日光光源,考察了不同条件下大孔-介孔TiO2-SiO2的光催化性能。结果表明,大孔-介孔SiO2具有三维连续贯通的大孔孔道,孔壁为连续的纳米SiO2薄膜;TiO2纳米晶以纳米薄膜的形式均匀地原位生长在SiO2纳米薄膜的两侧,得到的复合材料孔壁上存在丰富的介孔。当焙烧温度为600℃、TiO2的负载量为15.7wt%、染料溶液浓度为10 mgL-1且pH为3时,大孔-介孔TiO2-SiO2光催化剂对污染物的光催化降解效率最高,而且具有良好的重复使用性。   相似文献   

20.
以正硅酸乙酯(TEOS)为硅源,聚乙烯吡咯烷酮(PVP)为助纺剂,采用静电纺丝结合碳热还原制备出结晶度较高的β-SiC纤维,其比表面积为92.6 m2/g,表现出双电层电容储能特征,比电容为155.7 F/g。然后,利用水热法在SiC纤维表面生长出大量直径约为15 nm的NiCo2O4纳米线,得到NiCo2O4纳米线/SiC复合纤维。测试表明,NiCo2O4纳米线/SiC复合纤维中镍和钴元素分别以Ni2+/Ni3+和Co2+/Co3+价态形式存在,由于NiCo2O4纳米线与SiC纤维的协同作用,NiCo2O4纳米线/SiC复合纤维比电容显著提高,并表现出双电层和赝电容并存的特征,比电容可达300.3 F/g,当功率密度为58.1 W/kg时,NiCo2O4纳米线/SiC复合纤维能量密度为60.1 W·h/kg。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号