首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
加入适当矿物掺合料是使水泥基材料达到高性能的重要手段之一。本课题从工程应用的角度出发,以磨细矿渣和磨细矿渣-粉煤灰复合掺合料为研究对象,着重研究了矿物掺合料对水泥基材料耐海水侵蚀性能的影响。  相似文献   

2.
通过对微硅粉和磨细矿渣粉的作用分析,在普通混凝土中掺加这两种材料后所表现出的高强性和耐久性  相似文献   

3.
本研究针对液态碱组分碱矿渣水泥的缺陷,研制成功了强度标号达425R~625R的固态碱组分碱矿渣水泥,并对这种新型胶凝材料的生产工艺、水化机理、物理力学性能和耐久性进行了深入的研究。 运用现代测试手段详细研究了矿渣玻璃体的微观结构,发现矿渣玻璃体具有主要由富钙相和富硅相组成的微观分相结构,并且各相的存在状态和性质有很大的差异。在这一发现的基础上,本研究很好地解释了矿渣水硬活性的潜在性以及固态碱组分碱矿渣水泥的水化机理。研究表明,固态碱组分碱矿渣水泥的水化过程中没有诱导期或诱导期相当短,该水化过程主要经历矿渣的解体、新相的形成和长大、水化产物的缩聚和“混凝”三个阶段,其水化产物主要是沸石类矿物,另外还有少量的低碱性水化硅酸钙C-S-H(Ⅰ)。 研究表明,固态碱组分碱矿渣水泥属于低热水泥;其水泥石的孔隙率较小,且孔径大于10~3A的有害孔所占的比例较小;其抗渗性、抗冻性、抗碳化性能及抗化学腐蚀性等耐久性能良好。通过试验证实了用这种水泥配制的混凝土不会发生因碱集料反应而引起的膨胀破坏。 本研究研制成功的固态碱组分碱矿渣水泥不仅性能优良,而且充分利用工业废渣、成本低廉、生产工艺简单、使用方便,具有重要的实用意义。  相似文献   

4.
掺矿渣石膏对油井水泥性能的改善   总被引:2,自引:0,他引:2  
系统研究了不同配比的矿渣石膏体系对改善G级油井水泥膨胀性能和力学性能的影响.通过汞压入法(method of mercury intrusion pore measurement,MIP)和扫描电镜(SEM)等现代测试方法对矿渣油井水泥的水化硬化特性和机理进行了研究.试验结果表明:掺加矿渣石膏后能显著改善油井水泥石的早期强度;并且该体系在50℃养护温度下,通过石膏的不同掺量,可以获得比较好的早期膨胀数据;通过微观结构的分析,验证了石膏对矿渣油井水泥体系的激发作用.  相似文献   

5.
煤炭、粉煤灰及矿渣是用于水泥生产的原料或混凝土的掺合料,而细度是影响粉体材料性能的因素之一。本文以矿渣为材料,利用JFC-5对撞式流态化床气流磨制备了超细矿渣粉,对超细矿渣粉的粉体性能和微观形貌进行了研究。研究表明,气流磨粉磨超细矿渣粉存在粉磨平衡,超细矿渣粉颗粒分布集中,分选机转速过大,得到的矿渣粉体出现团聚现象。  相似文献   

6.
为研究半柔性路面(SFP)裂缝修补材料的基本工作性能,基于碱激发矿渣灌浆材料(OAASGM),本文通过试验系统评价了不同细砂粉含量对OAASGM的流动性、凝结时间、流变性能以及力学性能的影响,得出以下结论。1)细砂粉能有效延长凝结时间,改善OAASGM的流变性能,当掺加量为10%(OAASGM-10)时,流动性为14s,当操作时间为45min时,初始屈服应力为0.699Pa,塑性黏度为1.997Pa·s。2)OAASGM具有剪切变稀的特点,水分流失量较少。3)本文提出的碱激发矿渣灌浆材料满足半柔性路面(SFP)的技术要求,可替代水泥成为SFP的灌浆材料。  相似文献   

7.
超高性能混凝土(UHPC)是继高强度、高性能混凝土之后新近发展起来的一类新型混凝土材料。UHPC自身具备超高强度及高耐久性等优点,使其在高层、超高层建筑、大跨度空间结构与恶劣腐蚀环境下的重大土木工程中有广阔应用前景。本工作从材料制备角度,通过矿物掺合料改变UHPC基本配合比并且采用效率更高的微波养护方式对试件进行养护。通过一系列实验,观察矿渣的使用和微波养护对UHPC力学性能的影响,并通过微观表征分析研究其影响机理。制备了10%、25%、50%、70%和90%矿渣取代基本配合比中水泥部分用量试件,采用3 d延迟微波养护制度养护,测试3 d及28 d强度,随后选取性能典型试件进行29Si NMR、27Al NMR和XRD分析。实验发现标准养护下UHPC强度随着矿渣掺入而降低,但微波养护通过加速矿渣水化反应加强了混凝土力学强度发展进程。该加强效应对早期性能发展的影响更显著,且随着矿渣掺量增加而增强。微观表征分析首先确定了微波养护对试样水化的加速作用,并促进了晶体产物和短链C-S-H的形成,达到进一步克服矿渣对UHPC强度发展的延迟作用。  相似文献   

8.
展开了梯级粉磨工艺粉磨铁尾矿、石膏、矿渣及水泥熟料生产铁尾矿-矿渣基高性能胶凝材料(简称TSBC)及其性能的研究,探讨了不同粉磨工艺的粉体粒径特征及胶凝性能,对比了TSBC材料与PO52.5水泥的制备超高性能混凝土强度及耐久性差异。研究结果表明,三级粉磨较二级粉磨能更好发挥颗粒的"微磨球"效应,所得粉体材料粒径更小;粉磨中应将铁尾矿砂作为第一级粉磨材料,第一级粉磨时间不宜过长,否则导致粉体过细大量覆盖粗颗粒材料表面,降低后期粉磨效率;TSBC制备的UHPC不仅具有常规UHPC的强度甚至有更优良的耐久性能。  相似文献   

9.
周顺  周涵  李东旭 《材料导报》2021,35(z1):284-287
水泥基材料是目前使用量最大的建筑材料,在实际应用过程中,水泥基材料会出现损坏,达不到预期的性能要求.水泥水化产物中存在大量结晶的Ca(OH)2,影响各种水泥水化产物之间的粘结性,造成水泥基材料性能的降低.如何增强水泥基材料的性能成了国内外研究的热点,需要找到能够有效改善水泥基材料性能的方法.查阅国内外相关文献发现,将粉煤灰、硅灰、纳米SiO2(因三种材料的主要组分为SiO2,以下统称为硅基材料)或矿渣掺入到水泥基材料中,因其具有火山灰反应,并能起到填充作用,可明显提高水泥基材料的性能.掺合料的加入可降低水泥基材料中Ca(OH)2含量,减小其晶粒尺寸,使C-S-H凝胶的数量增多,改善水泥基材料的孔隙率,提高其性能.粉煤灰和矿渣成分中有部分玻璃态物质,能减少水泥浆体用水量,增加和易性;具有较低的火山灰性,适量掺入能降低水泥浆体的水化速度;含有粉煤灰或矿渣的水泥基材料早期强度较低,后期强度较高.硅灰与纳米SiO2的火山灰活性较高,能促进水化,适量掺入能够使水泥基材料早期强度大幅提高,但后期强度发展较慢;同时也会增大水泥基材料早期收缩,增加其结构开裂的风险.不同掺合料复掺后能产生协同增强效应,可获得性能优异的复掺改性水泥基材料.本文主要介绍了硅基材料和矿渣在水泥基材料中的应用,从反应机理、水化热、强度、孔隙率等方面来阐述其在水泥基材料中的研究现状和相关成果.对目前研究中存在的相关问题进行了分析总结,以期为制备性能优异的水泥基材料提供一定的参考.  相似文献   

10.
讨论了聚合物改性水泥基材料的历史、性能及改性机理。从力学性能及韧性、耐久性两方面说明了聚合物改性水泥基材料性能,从微观形貌、孔结构和聚合物与水泥基体的作用三方面详细讨论改性机理。最后,对聚合物改性水泥基材料的发展趋势进行了讨论。  相似文献   

11.
This paper presents a laboratory investigation on optimum level of ground granulated blast-furnace slag (GGBS) on the compressive strength of concrete. GGBS was added according to the partial replacement method in all mixtures. A total of 32 mixtures were prepared in four groups according to their binder content. Eight mixes were prepared as control mixtures with 175, 210, 245 and 280 kg/m3 cement content in order to calculate the Bolomey and Féret coefficients (KB, KF). For each group 175, 210, 245 and 280 kg/m3 dosages were determined as initial dosages, which were obtained by removing 30 percent of the cement content of control concretes with 250, 300, 350, and 400 kg/m3 dosages. Test concretes were obtained by adding GGBS to concretes in an amount equivalent to approximately 0%, 15%, 30%, 50%, 70%, 90% and 110% of cement contents of control concretes with 250, 300, 350 and 400 kg/m3 dosages. All specimens were moist cured for 7, 14, 28, 63, 119, 180 and 365 days before compressive strength testing.The test results proved that the compressive strength of concrete mixtures containing GGBS increases as the amount of GGBS increase. After an optimum point, at around 55% of the total binder content, the addition of GGBS does not improve the compressive strength. This can be explained by the presence of unreacted GGBS, acting as a filler material in the paste.  相似文献   

12.
Ground granulated blastfurnace slag (GGBS) is widely used as a partial replacement for Portland cement or as the major component in the alkali-activated cement to give a clinker-free binder. In this study, reactive MgO is investigated as a potentially more practical and greener alternative as a GGBS activator. This paper focuses on of the hydration of GGBS, activated by two commercial reactive MgOs, with contents ranging from 2.5% to 20% up to 90 days. The hydration kinetics and products of MgO–GGBS blends were investigated by selective dissolution, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy techniques. It was found that reactive MgO was more effective than hydrated lime in activating the GGBS based on unconfined compressive strength and the efficiency increased with the reactivity and the content of the MgO. It is hence proposed that reactive MgO has the potential to serve as an effective and economical activator for GGBS.  相似文献   

13.
From our previous findings, the recycling of ceramic waste aggregate (CWA) in mortar has been proved an ecological means plus an excellent outcome against chloride ingress. The CWAs were porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to further develop the CWA mortar as an eco-efficient construction material, ground granulated blast-furnace slag (GGBS) was incorporated. The slag (having the Blaine fineness of 6230 cm2/g) was utilized as a supplementary cementitious material (SCM) at three different replacement levels of 15%, 30%, and 45% of cement by weight. The efficiency of the GGBS on enhancing chloride resistance in the CWA mortars was experimentally assessed by using a silver nitrate solution spray method and an electron probe microanalysis (EPMA). The tests were carried out on mortar samples after immersed in a 5.0% NaCl solution for 24 weeks. Another set of the mortar samples was exposed to a laboratory ambient condition for 24 weeks and then followed with a carbonation test. The test results indicated that the resistance to the chloride ingress of the CWA mortar becomes more effective in proportion to the replacement level of the GGBS. In contrast, the carbonation depth of the CWA mortar increases with the increase of the GGBS. The activeness of the GGBS was also evaluated on the basis of the compressive strength development up to 91 days. Due to its high fineness, the GGBS can be used up to 30% while the high relative strength (more than 1.0) is achieved at all ages.  相似文献   

14.
The aim of this study is to promote the use of available natural dune sand from desert areas as a partial cement replacement. Binary and ternary combinations of ground dune sand (GDS), Portland cement (PC) and ground granulated blast furnace slag (GGBS) were investigated for their effects on the compressive strength of mortar cured under standard or autoclave curing conditions. The results showed that the compressive strength decreased significantly with increasing GDS and GGBS contents under standard curing. However, with autoclave curing, all of the binary and ternary mixtures yielded mortar with a compressive strength higher than that of the control sample. The autoclave-cured ternary combination of 30% GDS, 50% PC and 20% GGBS showed the highest compressive strength. It is possible to use a PC content as low as 10% since the mixture of 30% GDS, 10% PC and 60% GGBS displayed strength comparable to the control sample.  相似文献   

15.
This paper evaluates the effect of superabsorbent polymers (SAP) on hydration and microstructure of PC-GGBS mortars. Development of autogenous shrinkage, microstructural characteristics (MIP/SEM) and compressive strength were analysed during the first 90 days. Four levels of Portland cement (PC) replacement by GGBS (0%, 25%, 50% and 75%) and two types of SAP with different water absorption capacities were considered. The results proved the efficiency of internal curing by SAPs in PC-GGBS systems due to significant reduction in autogenous shrinkage, especially for higher contents of GGBS. SAP facilitates GGBS hydration activated by portlandite; its products can be deposited into the nano pores leading to a small relative expansion of the hardened bulk volume. This process is initiated during the second week and it lasts until the sixth week. Despite increased total porosity, compressive strength of SAPs modified mortars is comparable to the reference samples for low GGBS contents in advanced ages.  相似文献   

16.
Three ground granulated slags (FeMn arc-furnace (GGAS), Corex (GGCS) and blastfurnace (GGBS) slags) of varying chemical composition, and from different sources were used to make concretes using two w/b ratios (0.40 and 0.60) and three slag replacement levels (20%, 35% and 50%). The effect of chemical composition and replacement level of slags on the chloride penetration resistance of the concretes was assessed using the chloride conductivity test. The results showed that the chloride penetration resistance of concrete increases with decreasing w/b ratio and increasing slag replacement level. In the GGAS concretes, despite having relatively low SiO2 and high MgO content, its significantly high Mn2O3 and low Al2O3 content was found to have a negative effect on the chloride penetration resistance of the concrete. The significantly high chloride penetration resistance of GGCS concretes was partly attributed to both its high CaO content and particle fineness. Only GGCS concretes showed a trend of increasing chloride penetration resistance with increased particle fineness; GGBS and GGAS concretes did not show any trend between particle fineness and chloride penetration resistance. The slag activity index was found to be a better indicator of chloride penetration resistance in concrete than the slag hydraulic index.  相似文献   

17.
Cold bitumen emulsion mixture (CBEM) is not yet widely used as a surface course around the world. In this study, 0/14-mm-size dense-graded surface course CBEMs have been investigated. The mechanical performance was evaluated in terms of stiffness modulus over 3 months and resistance to permanent deformation under three different stress levels (100, 200, 300 kPa), whilst durability evaluation was carried out in terms of resistance to moisture and frost damage. The study has also investigated the incorporation of low cement content (1%) with relatively sustainable by-product fillers, namely ground-granulated blast furnace slag (GGBS) and fly ash (FA) type 450-S on both mechanical and durability performance. A comparison has been carried out between the low and high cement content CBEM, as well as with respect to corresponding hot mix asphalt (HMA). The results revealed that the incorporation of GGBS and FA in CBEMs leads to superior performance, similar to CBEMs treated with high cement content and comparable to an equivalent HMA. Furthermore, GGBS replacement exhibited better performance than that of FA replacement. The findings suggest that the new sustainable types of CBEM can be developed for using as a surface layer for medium- to heavy-trafficked roads.  相似文献   

18.
The present study investigated the effects of mesoporous amorphous rice husk ash (RHA) on compressive strength, portlandite content, autogenous shrinkage and internal relative humidity (RH) of ultra-high performance concretes (UHPCs) with and without ground granulated blast-furnace slag (GGBS) under different treatments. The results were compared with those of UHPCs containing silica fume (SF). Because of the mesoporous structure, RHA can absorb an amount of aqueous phase to decrease the free water content and to supply thereafter water for further hydrations of cementitious materials. Hence, compressive strength of RHA-blended samples is enhanced. The highly water absorbing RHA delays and slows down the decrease in the internal RH (self-desiccation) of UHPCs, and hence strongly mitigates autogenous shrinkage of UHPCs compared to SF. The combination of GGBS and RHA or SF improves the properties of UHPC. These results suggest that RHA acts as both highly pozzolanic admixture and internal curing agent in UHPC.  相似文献   

19.
The leaching of major and trace elements from concrete made with Portland cement, fly ash and GGBS (ground granulated blast-furnace slag) was studied using pH static availability and tank leach tests. The release of substances during the tank leach test occurs by surface dissolution of phases at the concrete surface and diffusion inside the concrete, the amounts depending on the phases controlling solubility and concrete porosity. Alkali release is controlled by diffusion and is thus reduced by lower water/binder ratios and the replacement of Portland cement by fly ash. Ca, Al and S release occurs mainly by surface dissolution of portlandite and AFt/AFm, respectively. The release of V is determined by surface dissolution of V substituted ettringite and/or calcium vanadate. Although fly ash can increase the total V content of concrete, enhancing release, only 2% of the total V content in concrete was available for release.  相似文献   

20.
This paper presents a laboratory study on the influence of combination of fly ash (FA) and ground granulated blast-furnace slag (GGBS) on the properties of high-strength concrete. A contrast study was carried out for the concrete (GGFAC) incorporating FA and GGBS, control Portland cement concrete and high-volume FA high-strength concrete (HFAC). Assessments of the concrete mixes were based on short- and long-term performance of concrete. These included compressive strength and resistance to H2SO4 attack. The microstructure of the concretes at the age of 7 days and 360 days was also studied by using scanning electron microscope. The results show that the combination of FA and GGBS can improve both short- and long-term properties of concrete, while HFAC requires a relatively longer time to get its beneficial effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号