首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
功率超声作用下柴油的深度氧化脱硫   总被引:1,自引:3,他引:1  
在催化氧化溶剂抽提的基础上,同时增加超声波为反应提供能量,开辟了一条全新的柴油氧化脱硫技术。考察超声频率、声强等因素对脱硫效果的影响。结果表明,对于高硫FCC柴油,以H2O2-乙酸为氧化剂,超声波氧化脱硫效果明显优于未加超声波的脱硫效果,可以在数分钟内达到深度脱硫的效果。当超声波的频率为28 kHz,声强为0.4 W/cm2时脱硫效果最好,脱硫率可达95%,产品回收率在93%以上。  相似文献   

2.
采用超声氧化法脱除柴油中硫化物,降低了柴油的硫含量。实验考察了氧化温度、氧化时间、氧化剂体积分数、催化剂体积分数等条件对柴油脱硫效果的影响。结果表明,选用甲酸与硫酸混合物作为催化剂,催化剂体积分数为2%(催化剂中甲酸与硫酸体积比为3∶2)、氧化剂体积分数为9%、反应温度为70 ℃、反应时间为60min时,采用超声氧化法脱除重油催化裂化柴油中的硫化物,再经N,N-二甲基甲酰胺(DMF)萃取氧化,柴油脱硫率达到83%,十六烷值有所升高,提高了柴油的质量。  相似文献   

3.
在超声波的作用下,用H2O2-CH3COOH-FeSO4体系将柴油中的含硫有机物(主要为苯并噻吩类)氧化成相应的砜,用N,N-二甲基甲酰胺(DMF)作萃取剂将砜从柴油中萃取除去。考察了剂油体积比、氧化剂的质量分数、反应时间、超声声强等因素对柴油脱硫的影响。实验结果表明,在H2O2和油的体积比为0.024,CH3COOH和H2O2的体积比为0.5,FeSO4和H2O2的质量比为0.2,声强为0.3 W/cm2,反应时间为10 min的条件下,可使柴油脱硫率达到88.3%,收率可达92%以上。  相似文献   

4.
催化氧化脱硫是降低柴油硫含量的非加氢脱硫工艺,在催化氧化溶剂抽提的基础上,增加超声波为反应提供能量。采用H2O2-甲酸作为氧化剂将辽河直馏柴油中的硫化物氧化成相应的砜,考察了氧化反应时间、温度、剂油体积比对脱硫效果的影响。实验结果表明,在超声频率为28 kHz,超声功率为200 W,H2O2和甲酸体积比为1∶1,萃取剂为N,N-二甲基甲酰胺(DMF),一次萃取10 min,萃取剂与油体积比为1∶2的条件下,反应氧化剂与油的体积比为1∶10,温度为50 ℃,氧化反应时间为10 min为较适宜的条件,其脱硫率达到87.8%。  相似文献   

5.
直馏柴油液-液催化氧化脱硫研究   总被引:11,自引:3,他引:11  
针对柴油加氢脱硫技术设备投资和操作费用高,柴油H2O2氧化脱硫技术又存在氧化剂价格高、柴油收率低和有含硫污水排放等技术经济问题,开发了一种新型直馏柴油催化氧化脱硫方法.采用液相TS-2催化剂和空气氧化剂,在常压低温下对直馏柴油进行催化氧化,辅以EA-1复合萃取剂萃取和白土吸附脱除氧化柴油中硫化物.实验结果表明,在60℃、0.1 MPa、反应时间5 min、催化剂和柴油体积比0.1条件下可将柴油硫含量从1 658μg·g-1降至133μg·g-1,柴油收率达到97.5%,脱硫柴油硫含量符合世界燃料规范Ⅱ类柴油标准.与现有柴油脱硫方法相比较,本文方法具有投资和操作费用低、操作条件缓和、柴油收率高和无"三废"排放的优点.  相似文献   

6.
7.
焦化柴油氧化脱硫的工艺研究   总被引:2,自引:2,他引:2  
以双氧水作氧化剂,甲醇作萃取剂,采用氧化反应与溶剂萃取相结合的方法对焦化柴油进行了氧化脱硫研究。通过单因素实验考察了氧化剂质量、反应时间、反应温度、催化剂的选择、催化剂的质量等对焦化柴油脱硫率的影响。结果表明,最适宜的氧化脱硫条件为:甲酸作催化剂,反应温度60℃、反应时间60min、剂油体积比为0.1,V(氧化剂):V(催化剂)为1.0。萃取试验条件为:在室温条件下,V(萃取剂):V(柴油)为1.0,静置时间20min。精制后柴油回收率达93.0%,柴油中硫的质量分数可降至350μg/g以下。  相似文献   

8.
微波辐射下柴油的催化氧化脱硫效果研究   总被引:1,自引:0,他引:1  
将苯并噻吩(BT)和二苯并噻吩(DBT)分别溶于正辛烷配成模型油,以H2O2为氧化剂,研究普通加热和微波辐射加热下磷钼酸催化模型油和直馏柴油的氧化脱硫效果。分析了催化剂用量、H2O2初始浓度、反应温度和反应时间等对DBT、BT脱除率的影响,分析了不同萃取条件下的柴油脱硫率和回收率。结果表明,微波辐射加热下,DBT、BT的脱除率比普通加热分别提高了7.7倍和3.7倍;在70℃和400W微波功率下,DBT、BT的脱除率分别为95.4%和62.3%;催化剂用量、H20。初始浓度、反应温度和反应时间等对DBT、BT的氧化脱除率均有影响;v(萃取剂)/v(柴油)为1/4时,采用DMF萃取1次,柴油的脱硫率为61.8%,回收率为98.4%,萃取次数增加,柴油脱硫率提高,而回收率明显下降。  相似文献   

9.
采用直馏柴油催化氧化脱硫工艺中试装置,在表观停留时间3~5min、反应温度60℃、氧化催化剂/柴油体积比0.24,反应物料循环量1000L/h和柴油/萃取剂体积比2.5的试验条件下对直馏柴油进行催化氧化脱硫中试研究。精制柴油的产品分析表明:柴油中的主要硫化物二苯并噻吩类被氧化为极性的砜类化合物经萃取脱出,本工艺脱硫效果良好。富集硫化物柴油与催化柴油按1∶10的体积比混合,在模拟兰州石化炼油厂柴油加氢工业装置的操作条件下加氢脱硫,可使混合富硫柴油中的硫含量从2500μg/g降低到800μg/g。富集硫化物柴油可作为催化裂化柴油加氢装置的原料。  相似文献   

10.
采用直馏柴油催化氧化脱硫工艺中试装置,在表观停留时间3~5 min、反应温度60 ℃、氧化催化剂/柴油体积比0.24,反应物料循环量1 000 L/h和柴油/萃取剂体积比2.5的试验条件下对直馏柴油进行催化氧化脱硫中试研究.精制柴油的产品分析表明:柴油中的主要硫化物二苯并噻吩类被氧化为极性的砜类化合物经萃取脱出,本工艺脱硫效果良好.富集硫化物柴油与催化柴油按1:10的体积比混合,在模拟兰州石化炼油厂柴油加氢工业装置的操作条件下加氢脱硫,可使混合富硫柴油中的硫含量从2 500 μg/g降低到800 μg/g.富集硫化物柴油可作为催化裂化柴油加氢装置的原料.  相似文献   

11.
HPLC-GC-AED法研究柴油中硫化物组成及分布   总被引:4,自引:0,他引:4  
采用HPLC-GC-AED法研究科威特常三线柴油中硫化物组成及分布。用HPLC对油样进行预分离,切割出5个馏分并回收,再采用GC-AED技术检测各组分中的硫化物,确定其结构类型及分布。结果表明,科威特常三线柴油中硫化物的类型为不同碳数取代基的苯并噻吩类和二苯并噻吩类;烷基取代苯并噻吩类中,各硫化物含量随取代基碳数增多呈递增分布,而烷基二苯并噻吩类中,取代基碳数较少的硫化物C3DBT、C2DBT、C1DBT中硫的含量较高。含硫化合物主要分布在L1~L3馏分,其中L2中硫的含量最高,占总硫的44.4%。最难以加氢脱除的含硫化合物4-MDBT主要分布在L2馏分中,而4,6-DMDBT主要分布在L3馏分中。  相似文献   

12.
汽油与柴油吸附脱硫技术研究与开发(I)——国内外发展现状   总被引:22,自引:1,他引:22  
随着环保法规的日益严格 ,世界范围内对车用发动机燃料的质量要求越来越严格 ,随之出现了低硫、低芳烃和低烯烃含量的“清洁燃料” ,其中硫含量问题已经成为国内外各大石油炼制企业生产低硫 ,特别是超低硫车用发动机燃料的技术关键。汽油与柴油吸附脱硫技术就是近年来开发的生产低硫车用发动机燃料的新技术 ,亦是近期国内外各大石油公司研究与开发的重点课题之一。从吸附剂以及吸附脱硫工艺等方面对汽油与柴油吸附脱硫技术的发展进行了综述。从现有的各种技术看 ,采用吸附法脱除汽油与柴油中的含硫化合物 ,具有投资及操作费用低等优点 ,具有较大的发展空间及应用潜力  相似文献   

13.
催化氧化法制备硬质氧化蜡   总被引:3,自引:0,他引:3  
以石蜡和聚乙烯蜡为主要原料,进行催化氧化反应,制得硬质氧化蜡。结果表明,当反应温度为170 ℃,反应时间为7 h,m(石蜡)∶m(聚乙烯蜡)为7∶3,催化剂质量分数为0.01%,助剂质量分数为1.0%,空气流量为0.20 m3/h时,所得氧化蜡的酸值为9.82 mg(KOH)/g,皂化值为79.19 mg(KOH)/g,针入度为9.2 (0.1 mm),滴熔点为87.4 ℃,75 ℃折光率为1.453 6,与天然硬蜡(巴西棕榈蜡)的性质非常接近。  相似文献   

14.
以抚顺石油二厂催化裂化汽油为原料,甲酸为催化剂,双氧水为氧化剂进行氧化萃取脱硫实验研究,实验对催化裂化汽油氧化萃取脱硫催化剂进行评价,筛选出甲酸催化剂。对氧化剂体积分数、甲酸与双氧水体积比、反应温度和反应时间等脱硫工艺条件进行考察,得出适合的脱硫工艺条件为:氧化剂的体积分数为6%,甲酸与双氧水的体积比为3.5∶1,反应温度为45℃,反应时间为60 min,在此条件下,催化裂化汽油的脱硫率为76.4%。  相似文献   

15.
通过复分解法合成了3种基于Mo8O4-26阴离子的四烷基铵钼多金属氧酸盐,并将其作为催化剂,质量分数为30%H2O2溶液为氧化剂、1-己基-3-甲基咪唑四氟硼酸盐离子液体([C6MIM]BF4)为萃取剂,用于柴油的催化氧化脱硫。分别考察了催化剂摩尔分数、反应温度、剂油体积比、反应时间、氧化剂用量等条件对模拟油品脱硫率的影响,确定了最优化反应条件,并将其应用于实际油品的脱硫中。结果表明,在60℃反应条件下,反应时间1h,当催化剂摩尔分数为5%、剂油体积比为1∶5、n(氧化剂)/n(硫化物)为6∶1时,该催化氧化-萃取体系对模拟油品(初始含硫质量分数为1 164μg/g)有较高的脱硫率,一次脱硫率可达95%以上。对抚顺石化公司生产的催化裂化柴油(初始含硫质量分数为850μg/g)一次脱硫率约为92%。  相似文献   

16.
本文使用自制SOP—A催化剂(CuO—Cr_2O_3/Al_2O_3),对含酚废水中酚氯化为CO_2和H_2O的工艺条件进行了研究。温度为380—390℃,空速为7700h~(-1)含酚量为3200pp血的废水,经SOP—A催化剂表面上氧化后,废水中含酚量可达国家排放标准以下。本实验所用催化剂与国外同类催化剂相比:反应温度低;氧化能力强,具有较好的活性。  相似文献   

17.
采用催化湿式氧化技术处理在生产苯并三氮唑(BTA)过程中产生的高浓度有机废水。实验证明:制备的复合负载型催化剂CuO-Co3O4-MnO2/ZrO2-CeO2在处理该废水时具有较好的催化活性。通过对催化剂投入增加、反应温度、氧气分压和废水pH值等工艺条件的考察,得出的最佳工艺条件为:催化剂投加量为10g/L,反应温度为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号