首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从转炉出钢到连铸各个关键工序,采用示踪的方法系统研究了淮钢长流程(转炉-精炼-真空处理-连铸-轧制)生产的轴承钢中非金属夹杂物来源,重点对精炼、真空处理、连铸3个关键工序钢液中非金属夹杂物情况进行取样分析。结果表明,淮钢长流程生产的轴承钢非金属夹杂物类型为氧化铝、钙铝酸盐、镁铝尖晶石和二氧化硅,非金属夹杂物主要来源于精炼内生、二次氧化和精炼搅拌卷渣或连铸钢包下渣,其中大颗粒非金属夹杂物主要来源于钢包卷渣或连铸钢包下渣,大颗粒非金属夹杂物类型主要为铝酸钙。  相似文献   

2.
结晶器液面波动是连铸过程中的常见现象,液面波动过大会造成铸坯夹杂物含量超标、纵裂等产品缺陷,严重的还会引起漏钢事故。系统分析了影响结晶器液面波动的因素,并提出了在夹杂物、结晶器流场、保护渣、冷却制度、拉速、液面控制系统等方面应采取的控制措施。  相似文献   

3.
采用大样电解法对冲压用钢铸坯中大型夹杂物进行了研究,分析了大型夹杂物粒径分布规律,并利用扫描电镜分析了夹杂物的类型。研究结果表明,大型夹杂物主要为复合型夹杂物,其粒径主要分布在140~300μm之间。同时大部分夹杂物都含有少量的K、Na、Mg、Ti元素,其主要来自钢水的脱氧产物、卷渣、卷入引流砂以及钢包炉的内衬侵蚀等4个途径。生产中,应确保吹氩时间,保证脱氧产物充分上浮;避免结晶器液面波动,减少结晶器卷渣;钢包开浇时尽可能移除引流砂,减少大型夹杂物。  相似文献   

4.
国内某厂镀锡板缺陷处夹杂物主要来自结晶器保护渣的卷入,但其成分与结晶器保护渣有明显差别。为了进一步研究这种成分差别的原因,建立了耦合热力学平衡和动力学扩散的结晶器卷渣类夹杂物的成分转变动力学模型,明确了卷渣类夹杂物的尺寸和密度对其成分转变的影响规律,并通过对结晶器和液相穴内的钢液流动和夹杂物运动的数值模拟研究了夹杂物在钢液中的停留时间。结果表明:结晶器保护渣卷入钢液后与钢液不断发生反应,成分会发生明显改变。卷渣类夹杂物转变为缺陷处夹杂物所需要的时间与夹杂物尺寸以及夹杂物密度有关,夹杂物的尺寸和密度越大,转变为缺陷处夹杂物成分所需的时间越长。卷渣类夹杂物转变为缺陷处夹杂物所需时间与夹杂物尺寸呈幂函数关系,与夹杂物密度呈二次函数关系。夹杂物在钢液中的平均停留时间随夹杂物直径的增大而减小,并且随着拉速的增大而减小。小尺寸夹杂物一旦被卷入钢液中,将有充足的时间转变为缺陷处的成分。大尺寸夹杂物在钢液中的平均停留时间小于成分转变时间,但最大停留时间远大于成分转变所需时间,表明部分大尺寸夹杂物依然具有充足的停留时间转变为缺陷处的成分。   相似文献   

5.
采用光学显微镜和扫描电镜对超低碳深冲钢冶炼全流程中的夹杂物进行分析。结果表明,RH精炼过程中的夹杂物由FeO转变为Al2O3类脱氧产物;中间包浇铸过程中的夹杂物以Al2O3·TiOx类夹杂为主,但受到钢包渣和中间包渣的影响;连铸过程中的夹杂物以铝钛夹杂为主,夹杂物的形成与结晶器内的卷渣紧密相关。  相似文献   

6.
为探究连铸非稳态对不锈钢大型夹杂物的影响,采用热轧超声探伤法研究了结晶器液面波动下430不锈钢连铸坯中大型夹杂物类型、来源、尺寸、数量、在铸坯中分布以及对冷轧板表面质量的影响等。结果表明,大型夹杂物主要包括4种类型,其中41.3%来源于结晶器水口结瘤物,38.7%为保护渣卷渣物,13.3%为精炼渣卷渣物,6.7%为内生夹杂物。水口结瘤物型夹杂物、精炼渣卷渣物和内生夹杂物一般在钢液出结晶器水口之前就已产生,主要集中在铸坯厚度方向距内弧面1/3到1/4处以及靠近窄面附近,保护渣卷渣物在结晶器内产生,存在某一区域聚集的情况。水口结瘤物型夹杂物属于脆性夹杂,且尺寸大,对冷轧板表面质量危害最大,因此应关注和减少连浇过程[Al]、[Mg]、[Ti]、[Ca]等残余活泼元素含量和钢水温度的波动,避免水口结瘤物结构变化产生大型夹杂物。通过热轧探伤法可获取连铸坯中大型夹杂物类型、尺寸、分布等信息,根据夹杂物变形特征可直观判断其危害性,但其准确度易受其他因素影响。  相似文献   

7.
针对汽车用户对板坯材料夹杂物的要求,分析了转炉炼钢、精炼和连铸生产过程中钢水过热度、钢水中氧含量、钢包渣、连铸生产工艺参数和操作方式等因素对汽车用钢板坯夹杂的影响,确认影响板坯夹杂的主要因素是钢水氧含量、钢包渣和结晶器液面波动等。针对这些主要因素,结合生产实际,通过降低钢水原始含氧量、减少钢水中钢渣的含量以及持续改善结晶器液面波动,可有效减少钢水夹杂缺陷的产生,提高板坯质量。  相似文献   

8.
以本溪钢铁公司炼钢厂板坯连铸结晶器为研究对象,通过物理模拟系统研究了水口吹气量、水口插入深度对连铸结晶器内气泡运动行为、液面波动及卷渣行为的影响作用,并在此基础上优化设计了连铸工艺参数。工业试验结果表明,经优化后连铸坯表层中含氧化钠(Na2O)、氧化钾(K2O)等保护渣成分的CaO Al2O3 SiO2 MgO系球状夹杂物基本消失,IF钢连铸坯中非金属夹杂物含量明显降低。  相似文献   

9.
以本溪钢铁公司炼钢厂板坯连铸结晶器为研究对象,通过物理模拟系统研究了水口吹气量、水口插入深度对连铸结晶器内气泡运动行为、液面波动及卷渣行为的影响作用,并在此基础上优化设计了连铸工艺参数。工业试验结果表明,经优化后连铸坯表层中含氧化钠(Na2O)、氧化钾(K2O)等保护渣成分的CaO Al2O3 SiO2 MgO系球状夹杂物基本消失,IF钢连铸坯中非金属夹杂物含量明显降低。  相似文献   

10.
对宝钢股份炼钢厂一炼钢分厂生产的冷轧薄板钢种连铸坯表面夹渣缺陷的形貌及成分进行分析,缺陷主要由结晶器保护渣、中间包覆盖剂、钢包渣等形成的CaO-Mg O系复杂氧化物和Al_2O_3絮状物分布在板坯表面,还含有一定量的钢中氧化产物。通过对连铸坯表面夹渣缺陷的形成机理进行研究,发现对板坯表面夹渣产生影响的因素主要有:结晶器卷渣、液面波动、炉次顺序、保护渣黏度、钢包和中间包下渣。针对浇铸状态改善、炉次顺序调整、保护渣选择、质量判定模型建立和浇铸工艺优化,提出了减少表面夹渣缺陷的措施。  相似文献   

11.
对低合金高强度结构钢Q345D连铸坯中大型夹杂物的类型、数量、尺寸以及分布情况进行了研究,并通过示踪剂追踪分析了钢中夹杂物的来源。研究表明:正常铸坯中的大型夹杂物的含量为26.76mg/10 kg,粒度分布在50~100μm;有SiO2夹杂、SiO2-CaO-Al2O3复合夹杂和硫化物夹杂等3类,主要来源于脱氧产物,其次为结晶器保护渣、中包覆盖剂和钢包渣的卷渣。  相似文献   

12.
王新华 《钢铁》2013,48(9):1-7
 能够造成冷轧薄板表面缺陷的钢中夹杂物主要是簇群状Al2O3、“Ar气泡+Al2O3”和结晶器保护渣卷入形成的大型夹杂物。在正常稳定连铸条件下,目前已能够做到对结晶器保护渣卷渣形成夹杂物加以有效控制。在各类非稳浇铸铸坯中,浇次开浇头坯的品质降低最严重,浇次尾坯中保护渣卷渣形成的夹杂物数量明显多于正常坯,炉-炉间交接坯和快换浸入式水口期间浇铸铸坯中,来源于保护渣卷入形成的夹杂物数量也多于正常坯试样。首钢京唐公司生产冷轧薄板钢类,在1.0~2.0m/min拉速范围,大型夹杂物随拉速增加呈减少趋势,对此应加以关注。研究发现,尺寸100μm以上的有害夹杂物主要存在于铸坯2mm表层内,生产“无表面缺陷”要求的汽车外板,应该采用铸坯表面清理。  相似文献   

13.
为提升轴承钢品质,尽可能去除大型夹杂物,结合某钢厂轴承钢生产实际,采用大样电解方法分析了轴承钢中大型夹杂物类型,并结合引流砂检测结果分析了大型夹杂物的来源。结果表明,开浇时铸坯大型夹杂物总量比浇注中期明显偏高,但浇注中期的夹杂物种类与开浇铸坯中类似。铸坯中共发现5类大型夹杂物,其中铝酸钙大型夹杂物来源于钢液中的夹杂物;氧化铝、尖晶石和氧化钙大型夹杂物来源于引流砂;含少量K的TiO2-SiO2-FeO-CaO-Al2O3系复合夹杂物并非一定源自结晶器保护渣,也可能来源于引流砂及烧结产物。除了在精炼过程要尽可能地去除大尺寸的夹杂物,在连铸过程仍需采用有效措施,将引流砂及烧结产物排尽,才能有效提升轴承钢的产品质量。  相似文献   

14.
针对GCr15轴承钢在酸浸低倍组织试样上出现的形如针孔、大小不一的深色凹坑缺陷,对凹坑进行SEM观察及EDS分析,确认该缺陷是钢中存在的大型夹杂物导致。大型夹杂物的来源之一是结晶器卷渣,二是钢渣反应形成的内生夹杂以及底吹氩气搅拌强度过大导致的卷渣夹杂。采用优质铁水、调整精炼脱氧工艺及氩气搅拌强度,优化结晶器保护渣黏度指数等措施,该类缺陷得到了有效控制。  相似文献   

15.
板坯连铸结晶器浸入式水口吹氩使结晶器流场发生改变,引起液面波动,造成铸坯卷渣。为了的这一问题,采用大样电解方法结合扫描电镜技术,研究了板坯连铸结晶器浸入式水口不同吹氩量和吹氩分配方式对铸坯夹杂物的数量和类型的影响,提出了减少卷渣的合理结晶器吹氩量和吹氩分配方式,得出了卷渣占结晶器夹杂物的比例超过半数的结论。分析表明合理的吹氩参数对减少结晶器卷渣有着重要的意义。  相似文献   

16.
针对安钢X52管线钢出现超声波探伤不合格的问题,分析了缺陷产生的原因及形成机理。分析认为,引起本次探伤不合格主要是钢中的夹杂物过多,以及在连铸过程中液面波动较大引起的卷渣。通过完善RH工艺操作、加强保护浇注,优化结晶器流场等措施,钢中夹杂物明显减少,超声波探伤不合格的问题得到了有效控制。  相似文献   

17.
通过扫描电镜和能谱分析仪对低碳低硅铝镇静钢表面卷渣缺陷微观形貌进行观察和能谱分析。结果表明,低碳低硅铝镇静钢表面较短条状卷渣缺陷的主要成分为钙、铝和氧,为典型的钙铝酸盐夹杂物;较长条状卷渣缺陷的主要成分为钙、硅、氟、钠和氧,为典型的保护渣成分。针对不同类型的卷渣缺陷及其成因,分别在炼钢工艺的挡渣出钢、精炼工艺的升温时间和钙含量以及连铸工艺的中间包控流装置、中间包保护气氛、结晶器液面波动、钢包下渣和结晶器保护渣等方面进行改造、控制和优化。采取上述措施后,因低碳低硅铝镇静钢表面卷渣缺陷造成的产品降级率由大于10.0%降至1.5%以下,产品质量得到明显提升。  相似文献   

18.
通过扫描电镜和能谱分析仪对低碳低硅铝镇静钢表面卷渣缺陷微观形貌进行观察和能谱分析。结果表明,低碳低硅铝镇静钢表面较短条状卷渣缺陷的主要成分为钙、铝和氧,为典型的钙铝酸盐夹杂物;较长条状卷渣缺陷的主要成分为钙、硅、氟、钠和氧,为典型的保护渣成分。针对不同类型的卷渣缺陷及其成因,分别在炼钢工艺的挡渣出钢、精炼工艺的升温时间和钙含量以及连铸工艺的中间包控流装置、中间包保护气氛、结晶器液面波动、钢包下渣和结晶器保护渣等方面进行改造、控制和优化。采取上述措施后,因低碳低硅铝镇静钢表面卷渣缺陷造成的产品降级率由大于10.0%降至1.5%以下,产品质量得到明显提升。  相似文献   

19.
《炼钢》2017,(1)
针对南钢轴承钢棒材样上无规律性出现的大型夹杂物问题,采用扫描电镜、X射线荧光光谱(XRF)和X射线衍射(XRD)分析仪在对棒材样上大型夹杂物和水口结瘤物成分、形态对比分析基础上,利用热力学计算,研究了钢水及精炼渣成分、包衬耐材与钢水中夹杂物存在形态的热力学关系。研究得出,水口中堆积的尺寸小于10μm颗粒状MgO·Al_2O_3和CaO-Al_2O_3(-MgO)高熔点结瘤物的脱落,是棒材上大尺寸长条状夹杂物的来源;现工艺条件的钢水及钢包渣成分,使MgO·Al_2O_3夹杂物在钢水中能稳定存在,为水口结瘤提供了夹杂物来源;控制浇铸过程钢包水口下渣及减少中间包耐材的侵蚀是控制轴承钢随机性大型夹杂物的关键。  相似文献   

20.
孙洪杰  王伟 《山东冶金》1998,20(6):31-33
造成连铸坯宏观夹杂的原因是钢液被二次氧化形成夹杂以及中间包中的夹杂物卷入钢液进入结晶器而形成铸坯夹杂,采取保护浇铸坯夹杂保证中间包液面达到一定高度,及时捞渣等措施,可减少铸坯夹杂,改善铸坯质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号