首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple antitumor modalities may be necessary to overcome lung tumor-mediated immunosuppression and effectively treat non-small cell lung cancer (NSCLC). To evaluate a multimodality gene therapy approach for control of local tumor growth, a weakly immunogenic murine alveolar cell carcinoma, L1C2, was transduced with either the interleukin-7/hygromycin-herpes simplex thymidine kinase (IL-7/HyHSVtk) internal ribosome entry site (IRES) retroviral vector or a vector containing the HyHSVtk, but not the IL-7 gene. Of the many cytokines available for gene transfer, IL-7 was chosen for these studies because it both stimulates CTL responses and down-regulates tumor production of the immunosuppressive peptide TGF-beta. Following selection in hygromycin, IL-7 transduction was confirmed by ELISA. Clones produced 1.25 to 10 ng of IL-7/ml/10(6) cells per 24 h. In vitro, genetically modified tumor cells were significantly more sensitive to ganciclovir (GCV) than unmodified parental tumor cells. The in vivo growth of ex vivo modified L1C2 cells was evaluated. There was a dose-response relationship between the amount of IL-7 secreted in vitro and the growth of genetically modified murine tumor in vivo. Transduced tumor cells regressed in mice following GCV therapy. Although ex vivo gene modification of tumor cells led to complete resolution of the tumor following implantation in vivo, IL-7 and HSVtk gene modified tumor cells were not effective in treating established parental tumors. However when 5 x 10(5) bone marrow-derived, in vitro activated dendritic cells (DC) were administered in combination with transduced tumor and GCV, 5 day old established tumors were eradicated in 80% of mice. These studies suggest that multicomponent vaccines may facilitate improved host responses by replacing host immune deficits and thus could have a role in adjuvant therapy and local control of NSCLC.  相似文献   

2.
Past studies have documented the promise of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) suicide gene therapy as a potential antitumor treatment. HSV-TK converts the pro-drug ganciclovir (GCV) into a toxic nucleotide analogue, the incorporation of which into cellular DNA blocks cell proliferation. In this report, we have examined the hypothesis that the effectiveness of HSV-TK suicide gene therapy can be enhanced by coexpression of the antitumor cytokine human tumor necrosis factor-alpha (TNF-alpha) from the same replication-defective HSV-1 vector. In vitro testing demonstrated that TNF-alpha expression from this vector potentiated the killing of both TNF-alpha-sensitive L929 tumor cells and TNF-alpha-resistant U-87 MG cells in the presence of GCV. Furthermore, treatment of established intradermal L929 tumors in vivo with the TNF-alpha/TK vector and GCV resulted in prolonged animal survival compared with treatment with parental HSV-TK vector in the presence or absence of GCV. Treatment of intracerebral U-87 MG tumors showed a clear benefit of TK therapy, but a significant further increase in survival using the TNF-alpha vector could not be demonstrated. We found that potentiation of cell killing in vitro required intracellular TNF-alpha because purified protein added to the culture medium of cells infected with HSV-TK vector failed to have the same effect. Accordingly, potentiation in vivo should depend on efficient infection, but immunohistochemical analysis indicated that virus administration by U-87 MG intratumoral injection was inadequate, resulting in an estimated <1% infection of all tumor cells. Moreover, the majority of infected tumor cells were localized at the tumor margin. Together, these results suggest that TNF-enhanced tk gene therapy should provide a useful treatment for TNF-alpha-sensitive tumors and perhaps also for TNT-alpha-resistant tumors if vector delivery can be improved to increase the percentage of transduced tumor cells.  相似文献   

3.
Gene therapy with retroviral mediated gene transfer of the herpes simplex thymidine kinase (HS-tk) gene into a tumor mass confers sensitivity of the tumor cells to ganciclovir (GCV). Tumor-specific immunologic responses may develop following treatment of the primary tumor with retroviral HS-tk and GCV. In the present study we assessed whether GCV treatment of HS-tk transduced colon cancer (TK+) implanted in the peritoneal cavity induced a systemic antitumor response that would inhibit growth of a second wild-type (TK-) tumor implanted in the liver. DHDK12 rat colon cancer cells were transduced in vitro with the retroviral HS-tk vector and established as a permanent cell line (TK+ cells). TK+ or TK- DHDK12 cells (6x10(6) cells) were injected intraperitoneally on day 0 into BD-IX rats. On day 10, TK- cells (3x10(6) cells) were injected into the liver in all the groups. The animals were then treated with GCV (150 mg/kg) for 13 days. TK+ peritoneal tumors underwent significant regression during therapy with GCV (0.05+/-0.004 g; n=7) compared to wild-type (TK-) tumors (2.2+/-0.7g; n=6) (P<0.05). The volume of TK- tumors in the liver was significantly lower in GCV-treated rats with TK+ peritoneal tumors (12.5+/-8.3 mm3) compared to rats with TK- peritoneal tumors (96.7+/-18.1 mm3) (P<0.05). Histology of the liver tumors in the TK+ groups showed a dense monocytic infiltrate with fibrosis and only occasional viable tumor cells. Gene therapy with retroviral HS-tk vectors may provide a novel approach to treatment of gastrointestinal cancer by both direct cytotoxicity and an indirect mechanism that may include enhanced immuno logic responses against disseminated disease.  相似文献   

4.
BACKGROUND: The suicide gene and prodrug, herpes simplex thymidine kinase (HStk) and ganciclovir (GCV), are now in clinical trials for recurrent malignancies. METHODS: We evaluated in vitro and in vivo efficacy of HStk gene transfer and GCV treatment of colonic adenocarcinoma in a syngeneic murine model. RESULTS: In vitro analysis demonstrated that CT-26 adenocarcinoma cells transduced with LTKOSN.2 retroviral vector inhibited the proliferation of wild-type CT-26 (nontransduced) cells after GCV exposure. Cooperative killing with HStk gene therapy was shown in vivo, mixtures of HStk CT-26 transduced cells (CT-26 TK), and nontransduced (CT-26 NV) cells and tumors containing only 9% CT-26 TK cells demonstrated complete regression after GCV (100 mg/kg). CONCLUSIONS: This in vitro and in vivo demonstration suggests that metabolic cooperation permits destruction of tumors even when gene transfer is effective only to a relatively small portion of the tumor. These important results suggest new avenues can be developed for the treatment of this lethal malignancy.  相似文献   

5.
We performed a dose-escalating phase I/II study of retrovirus-mediated herpes simplex virus type 1 thymidine kinase (HSV-1-TK) suicide gene therapy for metastatic melanoma. HSV-1 TK expression, which specifically sensitizes transduced and bystander cancer cells to ganciclovir (GCV) toxicity, was mediated by one (four patients, first dose step) to three (four patients, second dose step) injections of "M11" retrovirus vector-producing cells in melanoma cutaneous nodules. After a 7-day period allowed for cancer cell transduction, GCV was administered for 14 days. Safety was assessed by clinical and laboratory evaluations, and efficacy was assessed by tumor measurements and histology. M11 doses ranged from 76 to 1247 x 10(6) cells. Treatment-related adverse events were mild and transient, limited to inflammatory skin reactions at injection and fever on repeated injections. Plasma GCV was in the active range (>0.2 microg/ml); transgene was detected by polymerase chain reaction in three of six patients; treated tumor size was moderately affected under GCV as compared with untreated tumors, although 2 weeks after GCV administration important (>50%) treated-tumor necrosis was evidenced on histology in three of eight patients. All patients showed disease progression on long-term follow-up. Thus, M11-mediated HSV-1 TK gene therapy was well tolerated over a wide dose range. The limited tumor response is likely to be related to poor gene transfer efficiency. However, necrosis following GCV administration in transduced tumors indicates a potential for treatment efficacy.  相似文献   

6.
Because CD40 ligand (CD40L) is a co-stimulator molecule for multiple components of the immune response, we wanted to determine whether transgenic expression of the molecule would increase immune responses against a weakly immunogenic murine tumor, neuro-2a. Tumor cells were transduced with a retroviral construct containing the CD40L gene and co-injected with variable numbers of non-CD40L transduced cells into syngeneic mice. Mice injected with cells that expressed CD40L had a significant reduction in average tumor size as compared to controls (p < 0.0001). In addition, survival of the neuro-2a/CD40L mice was 48 days versus 34 days for the neuro-2a/neo controls (p < 0.02). Expression of CD40L by less than 1.5% of neuro-2a cells was sufficient for significant antitumor effects (p < 0.001). These antitumor effects protected mice from subsequent challenge with parental neuro-2a cells. The protective effects of CD40L were associated with systemic immunomodulation. In vivo depletion of CD8+ cells abrogated the CD40L-mediated antitumor effects. Analysis of spleens from CD40L-protected animals showed increased numbers of CD4+ and CD8+ cells, the majority of which co-expressed the activation marker CD25. In addition, an increased number of antigen-presenting cells (APCs) expressed the co-stimulatory molecule CD86. These experiments illustrate that transducing even a small percentage of tumor cells with CD40 ligand can create a long-lasting systemic immune response capable of impeding growth of unmodified neuroblastoma cells.  相似文献   

7.
A major goal of tumor immunotherapy is the effective eradication of established metastases associated with the induction of a T cell-mediated protective immunity. We achieved this in a poorly immunogenic murine neuroblastoma model by gene therapy with a single chain interleukin 12 (scIL-12) fusion protein that assures equal expression of its p35 and p40 subunits. Thus, NXS2 hybrid neuroblastoma cells (C1300 x dorsal root ganglion cells), which form experimental bone marrow and liver metastases in syngeneic A/J mice, were transduced with a gene encoding murine interleukin 12, monomerized by introduction of a protein linker between the p35 and p40 protein chains of this heterodimeric cytokine. We demonstrate for the first time that subcutaneous vaccination with these transduced cells induces a protective immunity, as indicated by the complete absence of liver and bone marrow metastasis after challenge with NXS2 wild-type tumor cells. Furthermore, vaccination of animals with established liver and bone marrow metastases completely eradicated liver metastases and suppressed bone marrow metastases. The local and systemic immune response against scIL-12-transduced NXS2 cells is largely dependent on CD8(+) T cells. This was demonstrated in vivo by depletion of immunocompetent A/J mice with monoclonal anti-CD4 and anti-CD8 antibodies and in vitro by specific major histocompatibility complex, class I-restricted CD8(+) T cell-mediated killing of NXS2 and their parental C1300 neuroblastoma cells. In conclusion, we demonstrate successful anti-tumor immunotherapy with an scIL-12 fusion protein that could facilitate clinical application of interleukin 12 gene therapy.  相似文献   

8.
T lymphocytes play a crucial role in the host's immune response to cancer. Although there is ample evidence for the presence of tumor-associated antigens on a variety of tumors, they are seemingly unable to elicit an adequate antitumor immune response. Modern cancer immunotherapies are therefore designed to induce or enhance T cell reactivity against tumor antigens. Vaccines consisting of tumor cells transduced with cytokine genes in order to enhance their immunogenicity have been intensely investigated in the past decade and are currently being tested in clinical trials. With the development of novel gene transfer technologies it has now become possible to transfer cytokine genes directly into tumors in vivo. The identification of genes encoding tumor-associated antigens and their peptide products which are recognized by cytotoxic T lymphocytes in the context of major histocompatibility complex class I molecules has allowed development of DNA-based vaccines against defined tumor antigens. Recombinant viral vectors expressing model tumor antigens have shown promising results in experimental models. This has led to clinical trials with replication-defective adenoviruses encoding melanoma-associated antigens for the treatment of patients with melanoma. An attractive alternative concept is the use of plasmid DNA, which can elicit both humoral and cellular immune responses following injection into muscle or skin. New insights into the molecular biology of antigen processing and presentation have revealed the importance of dendritic cells for the induction of primary antigen-specific T cell responses. Considerable clinical interest has arisen to employ dendritic cells as a vehicle to induce tumor antigen-specific immunity. Advances in culture techniques have allowed the generation of large numbers of immunostimulatory dendritic cells in vitro from precursor populations derived from blood or bone marrow. Experimental immunotherapies which now transfer genes encoding tumor-associated antigens or cytokines directly into professional antigen-presenting cells such as dendritic cells are under evaluation in pre-clinical studies at many centers. Gene therapy strategies, such as in vivo cytokine gene transfer directly into tumors as well as the introduction of genes encoding tumor-associated antigens into antigen-presenting cells hold considerable promise for the treatment of patients with cancer.  相似文献   

9.
Herpes simplex virus amplicon vectors expressing RANTES (HSVrantes) and the T-cell costimulatory ligand B7.1 (HSVB7.1) were studied for their ability to elicit a tumor-specific T-cell response in a murine lymphoma model. HSVB7.1- and HSVrantes-transduced EL4 cells expressed high levels of B7.1 and RANTES as analyzed by flow cytometry and enzyme-linked immunosorbent assay, respectively. Inoculation of ex vivo HSVB7.1 transduced cells in syngeneic mice resulted in regression of both transduced cells and nontransduced cells inoculated contralaterally. Direct intratumoral injection of HSVB7.1 and/or HSVrantes alone or in combination into established EL4 tumors led to complete tumor regression in injected tumors as well as in nontransduced contralaterally implanted tumor, whereas control tumors or tumors injected with HSVlac expressing beta-galactosidase did not regress. Maximal protection was achieved with combined injection of HSVB7.1 and HSVrantes; mice showing tumor regression were resistant to rechallenge with parental EL4 cells, and tumor cell-specific cytolytic T-cell activity was observed in mice demonstrating regression. HSV amplicon-mediated delivery of immune effector molecules may represent a useful strategy for immunotherapy in the setting of pre-existing tumor.  相似文献   

10.
The herpes simplex virus thymidine kinase (HSV-TK) converts ganciclovir (GCV) into a toxic product and allows selective elimination of TK+ cells in vitro and in vivo. It is currently being used in clinical gene therapy trials as a therapeutic gene or as a safety marker. We have analyzed the susceptibility of different tumor cell lines to the TK/GCV-mediated "suicide" effect. Therefore, tumor cells TSA, J558L, EB, and ESB and, as a control, NIH-3T3 cells were infected with a retrovirus containing a hygromycin/TK fusion gene. All cell lines were sensitive to GCV in vitro; however, the concentration of GCV and the time needed to eliminate tumor cells completely considerably varied between different tumor cell lines. TSA-TK cells were completely eliminated within 10 days in 1 microg/ml GCV, whereas ESB-TK cells required 22 days in 10 microg/ml GCV. When two cell lines were examined, the differing sensitivity to GCV in vitro correlated with the ability to eradicate TK+ tumors in vivo. TSA-TK tumors could be eliminated in almost all animals by systemic GCV administration, whereas ESB-TK tumors were completely resistant. Different sensitivity to GCV was not due to different TK expression levels because the cells were similarly resistant to hygromycin, and Western blot analysis with an anti-TK antiserum revealed similar protein amounts in TSA/TK and ESB-TK cells. Together, the results demonstrate that tumor cells are highly different concerning the susceptibility to the TK/GCV effect, which, however, may be tested for in vitro.  相似文献   

11.
Metabolic cooperation via gap junctional intercellular communication (GJIC) is an important mechanism of the bystander effect in gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) 'prodrug' system. Since retinoids have been reported to increase GJIC by induction of connexin expression, we hypothesized that these compounds could be used to augment the HSVtk/GCV bystander effect. Addition of all-trans retinoic acid increased GJIC in tumor cell lines, augmented expression of connexin 43, and was associated with more efficient GCV-induced in vitro bystander killing in cells transduced with HSVtk via either retrovirus or adenovirus vectors. This augmentation of bystander effect could also be seen in vivo. HSVtk-transduced tumors in mice treated with the combination of GCV and retinoids were significantly smaller than those treated with GCV or retinoids alone. These results provide evidence that retinoids can augment the efficiency of cell killing with the HSVtk/GCV system by enhancing bystander effects and may thus be a promising new approach to improve responses in gene therapy utilizing the HSVtk/GCV system to treat tumors or vascular restenosis.  相似文献   

12.
To examine the possibility of cytokine gene therapy in relation to pancreatic cancer, we evaluated the antitumor effect of human pancreatic carcinoma cells (AsPC-1) which were retrovirally-transduced with several kinds of cytokine genes. These cells were inoculated into BALB/c nude mice and their tumor volumes were assessed. The in vitro growth rate of the transduced cells was not different from that of a parental cell line. Among the transduced cells, human interleukin (IL)-6-transduced AsPC-1 and mouse granulocyte macrophage colony-stimulating factor-transduced AsPC-1 cells showed a significant retardation of tumor growth compared with a parental cell line. In the cases of AsPC-1 cells transduced with the human IL-2 or mouse IL-4 gene, small tumors were generated but thereafter they regressed completely. Histological examinations showed monocytic cell infiltration around the tumors of IL-2- or IL-4-producing cells. These data suggest that secretion of IL-2 or IL-4 from tumor cells can induce an antitumor effect even in the defective condition of mature T cells.  相似文献   

13.
Metastases of breast cancer are a major cause of treatment failure. To evaluate the therapeutic efficacy of suicide gene therapy in metastatic breast cancer, we used the herpes simplex virus thymidine kinase (HSV-tk) gene followed by ganciclovir (GCV) administration to treat breast cancer, generated by an adenocarcinoma cell line MOD in syngeneic mice. The bystander effect of HSV-tk + GCV on tumor cell killing was illustrated by demonstrating complete regression of subcutaneous tumors consisting of 90% parental tumor cells and 10% HSV-tk transformed tumor cells. To establish a model of breast cancer metastases in the liver, tumors were generated by intra-hepatic implantation of MOD cells in syngeneic animals. Two weeks after tumor cell implantation, replication defective adenoviral vectors expressing HSV-tk (ADV.tk), or beta-galactosidease (ADV. beta-Gal) were injected intratumorally, followed by buffer or GCV administration. Treatment with ADV.tk + GCV resulted in significant regression of tumor (P < .001), as assessed by computerized morphometric analysis of residual tumor. This was reflected as a significant prolongation of survival in treated animals (P < .001). These results demonstrate that ADV-mediated suicide gene therapy in vivo can be incorporated in a comprehensive treatment strategy for liver metastases of breast cancer.  相似文献   

14.
OBJECTIVE: To investigate the inhibitory effect in vivo of ganciclovir (GCV) on the growth of human ovarian cancer cells (AO) transducted with the thymidine kinase gene of herpes simplex virus I type (HSV1-tk). METHODS: Tumors were induced in nude mice by subcutaneous injection of AO cells and AO cells carried with HSV1-tk gene from China strain (AO/HSV1-tk cells). When the growing tumors were visible, GCV was injected daily into the peritoneum of the nude mice. RESULTS: The average weights of survived AO/HSV1-tkc tumors and AO tumors treated with GCV were 0.087 +/- 0.036 g and 0.661 +/- 0.260 g respectively. Most of the survived AO/HSV1-tkc cells treated with GCV were characterized by hypertrophy and necrosis, but their nuclear chromatins predominantely took the forms of heterchromatins. CONCLUSIONS: GCV could effectively inhibit the growth of HSV1-tk positive human ovarian cancer cells in vivo, but the nuclei of the survival tumor cells appeared to proliferate actively. As the same results of in vitro experiments, this may suggest that HSV1-tk/GCV gene therapeutic system might be combined with S-phase chemotherapy to increase the long-term effect.  相似文献   

15.
Immunological gene therapy of cancer relies heavily on the activation of T cells, but tumors with defects in MHC gene expression are not recognized by MHC-restricted T cells. To investigate the potential of cytokine genes for the therapy of MHC-negative tumors, we transduced B78H1, a class I-negative murine melanoma clone, with a polycistronic vector carrying murine interleukin (IL)-12 genes. The clones studied produced 400-25,000 pg/ml IL-12; their in vitro growth properties were similar to those of parental cells. A complete inhibition of growth was observed in vivo both after s.c. and i.v. administration of all IL-12 clones. IL-12-transduced cells were also used as a therapeutic vaccine in mice bearing micrometastases by nontransduced parental cells. A significant (80-90%) reduction in the number of lung nodules was obtained. Immunohistochemical analysis and studies in immunocompromised hosts showed that T cells and natural killer cells had a significant role in the elimination of IL-12-releasing cells. In situ hybridization with cytokine probes detected a strong increase in the proportion of leukocytes positive for IFN-gamma, tumor necrosis factor alpha, IL-1beta, and IFN-inducible protein 10 at the site of rejection of IL-12-engineered tumor cells. However, it was clear that the loss of in vivo growth was also due to T-cell- and natural killer cell-independent factors, possibly related to the antiangiogenic properties of IL-12. In conclusion, tumor therapy based on IL-12 gene transduction was effective on a MHC-negative metastatic tumor, suggesting a possible application to MHC-defective human neoplasms.  相似文献   

16.
Transfer of the herpes simplex thymidine kinase (HSV-TK) gene into tumor cells confers sensitivity to the cells to the viral drug ganciclovir (GCV). Although the efficacy of the HSV-TK/GCV approach is well studied, the mechanisms for the resistance of HSV-TK-transduced tumor cells to GCV are poorly understood. Here, we examined the mechanisms for GCV resistance in HSV-TK-transduced gastrointestinal (GI) cell lines. Our results show that GCV sensitivities vary in vitro and in vivo among the different HSV-TK-transduced GI tumor cell lines. GCV-resistant colonies were isolated from several different HSV-TK-transduced GI tumor cell lines after 14 days of GCV treatment. Characterization of GCV-resistant colonies demonstrated that the HSV-TK gene was either partially or completely deleted from the resistant HSV-TK-transduced cells. In the HT-29 RM and MIAPACA-2 RM cells, a 220-bp deletion of the gene was found, whereas in the HT-29 R1-R5-resistant cells, the whole TK gene was found to be absent. Immunocytochemical studies using a polyclonal antibody to the TK protein demonstrated that the HSV-TK protein was absent in the GCV-resistant, HSV-TK-transduced cells. Transfection of the resistant cells with an adenoviral vector containing a HSV-TK gene restored sensitivity to GCV. The presence of GCV-resistant cells was only demonstrable in GI tumor cell lines that also demonstrated a poor bystander effect. Our results suggest that GCV resistance found in tumor cells transduced with a retroviral HSV-TK gene is due to the lack of a functional TK protein in the tumor cells rather than any intrinsic resistance of the cells to GCV. In tumor cells with a good bystander effect, the small percentage of TK-transduced cells that do not express the TK protein are probably killed by the bystander effect because GCV-resistant tumor cells were not found in these cell lines. GCV-resistant tumor cells were found only in tumor cell lines with a poor bystander effect, by which, presumably, the transduced tumor cells lacking a functional TK gene were not killed by the bystander killing effect.  相似文献   

17.
A variety of strategies have been attempted in the past to stably transduce natural killer (NK) cells with cytokine or other cellular genes. Here, we demonstrate the successful delivery of the interleukin-2 (IL-2) gene into two human NK cell lines, IL-2-dependent NK-92 and IL-2-independent YT, by retroviral transduction. An MuLV-based retroviral vector expressing human IL-2 and neor markers from a polycistronic message was constructed and transduced into a CRIP packaging cell line. By coincubation of NK cells with monolayers of CRIP cells or by using retrovirus-containing supernatants in a flow-through method, 10% to 20% of NK cells were stably transduced. Upon selection in the presence of increasing G418 concentrations, transduced NK cells were able to proliferate independently of IL-2 for more than 5 months and to secrete up to 5.5 ng/10(6) cells/24 h of IL-2. IL-2 gene-transduced NK-92 cells had an in vitro cytotoxicity against tumor targets that was significantly higher than that of parental cells and secreted interferon gamma (IFNgamma) and tumor necrosis factor alpha (TNFalpha) in addition to IL-2. Moreover, the in vivo antitumor activity of IL-2 gene-transduced NK-92 cells against established 3-day liver metastases in mice was greater than that of parental nontransduced NK cells. Stable expression of the IL-2 transgene in NK cells improved their therapeutic potential in tumor-bearing hosts. Thus, transduced NK cells secreted sufficient quantities of bioactive IL-2 to proliferate in vitro and mediated the antitumor effects both in vitro and in vivo in the absence of exogenous IL-2. These results suggest that genetic modification of NK cells ex vivo could be useful for clinical cancer therapy in the future.  相似文献   

18.
This report characterizes the immunological host response to a syngeneic murine mammary carcinoma along with variants genetically modified to express B7-1 or secrete GM-CSF and interleukin-12 (IL-12). MT-901 is a subline of a mammary adenocarcinoma that was chemically induced in the Balb/c host. It was found to be weakly immunogenic by immunization/ challenge experiments, and it induced tumor-specific T-cell responses in lymph nodes (LN) draining progressive subcutaneous tumors. Tumor clones expressing B7-1 or secreting GM-CSF exhibited reduced tumorigenicity without completely abrogating tumor growth, whereas IL-12 elaboration lead to complete tumor growth inhibition. In vivo subcutaneous inoculation of a transgenic cell clone secreting GM-CSF (240 ng/10(6) cells/24 hours) resulted in significantly enhanced T-cell reactivity of tumor-draining lymph node (TDLN) cells as compared to wild-type TDLN cells. This finding was obtained from observations assessed by several different methods, including: 1) in vitro cytotoxicity, 2) in vitro interferon-gamma release, and 3) adoptive transfer in mice with established tumor. Moreover, the transfer of activated LN cells derived from mice inoculated with GM-CSF-secreting tumor cells resulted in the prolonged survival of animals with macroscopic metastatic disease, which was not evident utilizing LN cells from mice inoculated with wild-type tumor. By contrast, clones that expressed B7-1 or IL-12 (4 ng/10(6) cells/24 hours) did not elicit enhanced tumor-reactive TDLN cells compared with wild-type tumor when assessed in the adoptive transfer model. The autocrine secretion of GM-CSF by transduced tumor cells was found to serve as an effective immune adjuvant in the host response to this weakly immunogenic tumor.  相似文献   

19.
Antitumor gene therapy using herpes simplex type 1 thymidine kinase (TKh) and ganciclovir (GCV) treatment has revealed an important intratumoral bystander effect. A whole tumor can be eliminated when only a fraction of its tumor cells express TKh. We now report that the bystander effect not only acts within a tumor, but also between distant tumors. One TKh+ tumor was generated simultaneously with one or multiple TKh- tumors in different rat liver lobes such that there was no contact between the resulting tumors. Both the TKh+ and the TKh- tumors regressed after GCV treatment and showed infiltration with macrophages and T lymphocytes. This distant bystander effect, which is likely immune mediated, should be of major importance for gene therapy of disseminated tumors.  相似文献   

20.
We have evaluated the feasibility of gene transduction using replication-defective adenovirus vector as a novel therapy for medullary thyroid carcinoma (MTC), a thyroid C cell neoplasm. Replication-defective adenoviruses were constructed to express murine interleukin-2 (mIL-2) gene and Escherichia coli beta-galactosidase (beta-gal; lacZ) gene under the control of the human cytomegalovirus (CMV) promoter (AdCMVmIL2, AdCMVbeta-gal) by homologous recombination. The efficiency of transduction was evaluated using AdCMVbeta-gal at different conditions. The gene transduction efficiency was dependent on multiplicity of infection, duration of exposure to the virus, and viral concentration. The expression of functional mIL-2 in transduced tumor cells was verified both in vitro and in vivo. Two cell lines (rat MTC and mMTC) secreted large amounts of functional mIL-2 after transduction, as tested in cytotoxic T lymphocyte (CTL) L-2 cells. When AdCMVmIL2-infected mMTC cells were injected s.c. into their host animals, tumors developed in 2 of 10 animals, in contrast to 9 of 10 animals injected with AdCMVbeta-gal-infected mMTC cells and all 10 animals injected with parental mMTC cells. Moreover protected animals developed a long lasting immunity against mMTC tumor cells and their splenocytes, showing cytotoxicity to parental tumor cells, and active natural killer (NK) cell activity. BALB/c-SCID (severe combined immune deficiency) mice were also used to evaluate the function of NK cells in antitumor activities. No tumor developed in SCID mice injected with AdCMVmIL2-infected cells, whereas all animals injected with either AdCMVbeta-gal-infected or parental mMTC cells developed tumors. Our data indicate that IL-2 production by MTC cells leads to rejection in syngeneic animals and suggest that both cytotoxic T cells and NK cells may play an important role. In addition, transduction of adenoviral vectors into tumor cells produces some nonspecific antitumor effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号