首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
三维激光在切割带有转角的工件时,由于能量的过多射入,在转角处会发生过烧现象。采用2 kW的Rofin光纤激光器、RX160L型史陶比尔机器人以及配套的辅助设备集成的三维激光切割机对45钢转角切割进行了研究,提出了在转角处减少工艺参数点、优化激光切割过程中机器人的运动姿态以及优化工艺参数的工艺手段减少过烧现象。研究结果表明在激光功率600 W,切割速度25 mm/s,辅助气体O2压力0.21 MPa时,经过工艺优化后进行转角切割可以有效避免过烧现象的发生,获得的切割断面平整,无挂渣。随着激光功率和辅助气体压力的增大,切缝宽度增大;随着切割速度增大,切缝宽度减小。随着激光功率增加,切割面粗糙度减小;随着切割速度和辅助气体压力增大,切割面粗糙度先减小后增大。  相似文献   

2.
为优化304不锈钢激光切割工艺参数,基于响应面法设计实验,建立了2 mm厚的304不锈钢激光切割质量指标预测模型,运用方差分析法检验了模型的可靠性。研究了工艺参数对激光切割质量指标的影响规律,并以切缝宽度、挂渣量、表面粗糙度最小为目标对工艺参数进行了优化。实验结果表明:挂渣量随激光功率、切割速度的增加而增加,随辅助气体压力的增加而减小;切缝宽度随激光功率的增加而增大,随离焦量的增加先减小后增大;表面粗糙度随辅助气体压力的增加而增大,随激光功率、离焦量的增加先减小后增大。  相似文献   

3.
为研究电火花线切割加工工艺参数对TC4钛合金材料加工质量的影响,采用单因素试验法,分析脉宽、放电间隙、功率放大管数及变频值等工艺参数对TC4钛合金切割速度与表面粗糙度的影响规律.试验结果表明,不同参数变化对材料的切割速度与表面粗糙度有不同影响.  相似文献   

4.
为研究加工参数对超声辅助滚压强化TC4钛合金表面完整性的影响规律,设计基于主轴转速、进给速度、静压力和加工次数的4×4正交试验,对试样表面显微形貌、残余应力、硬度和粗糙度进行观测分析。结果表明:表面残余应力和硬度随主轴转速和进给速度的增大先增大后减小,随静压力的增大逐渐增大,随加工次数的增多逐渐减小;表面粗糙度随主轴转速和进给速度的增大逐渐增大,随静压力和加工次数的增大而减小。加工后试样表面完整性得到有效提高,划痕缺陷被消除,表面光整度提高;并形成了有利的残余压应力,最大值为-431.063 MPa,表面显微硬度提高了38.1%,表面粗糙度降低了92.7%。  相似文献   

5.
为了对激光切割质量进行预测和尺寸补偿,以激光切割速度、激光功率和焦距因素作为自变量,选择尺寸误差、熔化氧化层尺寸和切割面粗糙度作为加工质量指标,进行了正交试验,建立了激光切割工艺参数与质量指标的回归模型。并试验验证了该模型的可靠性,通过该回归模型预测了尺寸误差值,并进行了尺寸加工量补偿,最终使加工误差减小。  相似文献   

6.
钨合金是高熔点材料,其激光热切割是难点。利用单模光纤激光作为切割热源,切割板厚0.9 mm的钨合金(合金成分:93W-4.9Ni-2.1Fe),探讨激光切割工艺参数及其切口质量。试验结果表明,在切割激光功率500 W、切割速度0.5 m/min、切割气体(氮气)压力0.8 MPa的条件下,切割缝宽约102μm,切割缝质量较好。在此激光切割工艺参数的基础上,若降低切割速度,切割缝宽度增大;若提高切割速度,无法获得良好的切割质量;若降低切割气体压力,无法获得良好的切割质量;若增加切割气体压力,对减小切割缝宽度及改善切割质量基本没有影响。  相似文献   

7.
采用6kW光纤激光器切割6mm不锈钢,分析了不同的激光切割工艺参数,如激光功率、切割速度、切割气体种类及压力、焦点位置以及激光倾斜角度对切割质量的影响。以切缝背部的挂渣情况作为评判切缝质量的标准,结果表明:增大切割气体压力可以降低底部挂渣以及粗糙度,但是压力达到一定程度后,挂渣和粗糙度没有明显变化;在切割厚板时,焦点位置位于工件的下部并且越靠近底表面,效果越好;光束入射倾角超过25°,切割质量变差,甚至切不透。通过大量的切割工艺试验得到在切割气体为N2,激光功率为3.3kW,切割速度为2.0m/min,离焦量为-4mm,气体压力为1.7MPa,喷嘴到工件表面距离为1.0mm时,切割质量最佳。  相似文献   

8.
通过对不锈钢钢管的激光切割试验,探讨了其加工的工艺特点,分析了激光功率、切割速度、焦点位置以及辅助气体的压力等对切割质量的影响。实验结果表明,只要工艺参数选择适当,可获得很好的切口质量,且能提高生产效率。  相似文献   

9.
通过正交试验研究激光功率、切割速度、偏焦量、辅助氧气气压等工艺参数对激光切割1060纯铝板切割面质量的影响,研究发现:最佳切割工艺参数为激光功率为900 W,切割速度为40 mm/s,偏焦量为-0.5 mm,氧气气压为0.8 MPa;增大激光功率和氧气压力,降低切割速度和减小偏焦量有助于提高切割质量;切割界面一般由光亮区和重熔区组成,在一定的切割工艺参数下切割面可出现单一区域。  相似文献   

10.
通过超声振动滚压加工正交试验,研究主轴转速、进给速度、静压力和加工次数对TC4钛合金表面质量的影响,并将材料的表面粗糙度、显微硬度及残余应力作为其表面质量的评价指标。试验结果表明:超声振动滚压加工工艺能降低TC4钛合金表面粗糙度,大幅度提高显微硬度,在表面引入残余压应力;合适的主轴转速、进给速度及加工次数使表面粗糙度达到最佳效果,一定范围内,表面粗糙度随着静压力的增大而减小;主轴转速对材料表面显微硬度影响较小,显微硬度随着进给速度的增大而减小,随着静压力及加工次数的增大而增大;主轴转速对材料表面残余应力有无规律的影响,材料表面的残余应力值随着进给速度的增大而减小,随着静压力及加工次数的增大而增大。  相似文献   

11.
钛合金蒙皮强度大,耐高温,但因不易加工和公差难控制等原因未能广泛应用于战机制造。2014年8月,由中国航天科工四院红阳公司精工打造的数控激光切割机圆满解决了这一难题,得到了满足焊接要求的钛合金蒙皮。激光技术起源于20世纪60年代初期。由于激光精密成形不需要加工刀具,且加工速度快、表面变形小、可加工材料种类多,已经在制造领域中越来越多地显示了它的优越性,尤其以激光焊接、切割加工应用最为广泛,并促  相似文献   

12.
采用不同的光纤激光切割工艺参数(功率、频率、脉宽、切割速度、氧气压力、喷嘴距离)对?1.8 mm(壁厚0.1 mm)的L605管材进行了切割。将切割试样酸洗处理后,用3D共聚焦显微镜测量切缝宽度和切面粗糙度,用扫描电镜(SEM)观察切面的微观形貌。结果表明:激光功率增大,切缝宽度增大,切面粗糙度先减小后增大;激光频率、脉宽增大,切缝宽度和切面粗糙度都增大;切割速度增大,切缝宽度减小,切面粗糙度增大;氧气压力提高,切缝宽度增大,切面粗糙度降低;喷嘴距离为0.25 mm时,切缝宽度和切面粗糙度均最小。激光功率、频率、脉宽、切割速度、氧气压力、喷嘴距离改变使切面上的切割条纹发生改变以及出现残渣、金属屑、重铸层等。  相似文献   

13.
采用往复式金刚石线锯对氮化硅进行了切割工艺实验研究,分析了线锯切割速度、进给速度和张紧压力对氮化硅表面粗糙度的影响,对试样表面进给方向和切割线方向的表面粗糙度变化趋势均进行了考察。结果显示:磨粒切削深度随线速度增大而减小,随进给速度和张紧压力的增大而增大。获得的较优的工艺参数为切割线速度1.5 m/s,进给速度0.08 mm/min,张紧压力0.18 MPa,探讨了线锯的磨损形式以及线锯磨损对试样加工表面粗糙度的影响。  相似文献   

14.
运用正交试验对2A12铝合金激光切割参数中激光功率、切割速度、气体压力的工艺数据进行极差、方差分析,得到综合质量最优的因素组合。并以切口粗糙度为研究对象,建立其BP神经网络预测模型,训练后的模型在验证样本测试中的预测值和实际值之间误差较小,从而证明了建立BP神经网络来预测激光切割切口表面粗糙度的可行性,在实际生产中对指导激光切割获得较好的切割质量有一定的实用价值。  相似文献   

15.
20092257激光切割及其在切割石板材中的应用研究/马立修//应用激光.-2008,28(4):292~294简述了激光切割的工作原理及特点。选用六种天然石板材作为试验样本,在明确试验样本组成成分及硬度的基础下,采用大功率CO2激光器切割系统,对六种不同硬度、不同厚度的天然石板材进行切割试验,获得切割六种不同硬度、不同厚度的天然石板材时的最佳工作速度,从而优化了激光切割天然石板材的切割工艺。试验结果表明:激光切割天然石板材的切割质量与石板材含杂质的多少、石板材的肖氏硬度有关。图1表2参720092258辅助气体对5A06铝合金Nd:YAG激光切割质量的影响/葛亚琼…//应用激光.-2008,28(5):358~361,394利用高功率脉冲固体Nd:YAG激光对4mm厚的5A06铝合金板材进行切割试验,探讨辅助气体Ar,N2,O2对激光切割质量的影响。通过光学显微镜、扫描电子显微镜、粗糙度测量仪、X射线衍射仪分析切缝及切面的形貌、粗糙度、物相及显微组织,结果表明:分别采用这三种辅助气体时,切缝均窄细平直,挂渣量依次增多;垂直度分别为0.08,0.08,0.05m;切面粗糙度分别为2.870,3.554,7.9...  相似文献   

16.
20092257激光切割及其在切割石板材中的应用研究/马立修//应用激光.-2008,28(4):292~294简述了激光切割的工作原理及特点。选用六种天然石板材作为试验样本,在明确试验样本组成成分及硬度的基础下,采用大功率CO2激光器切割系统,对六种不同硬度、不同厚度的天然石板材进行切割试验,获得切割六种不同硬度、不同厚度的天然石板材时的最佳工作速度,从而优化了激光切割天然石板材的切割工艺。试验结果表明:激光切割天然石板材的切割质量与石板材含杂质的多少、石板材的肖氏硬度有关。图1表2参720092258辅助气体对5A06铝合金Nd:YAG激光切割质量的影响/葛亚琼…//应用激光.-2008,28(5):358~361,394利用高功率脉冲固体Nd:YAG激光对4mm厚的5A06铝合金板材进行切割试验,探讨辅助气体Ar,N2,O2对激光切割质量的影响。通过光学显微镜、扫描电子显微镜、粗糙度测量仪、X射线衍射仪分析切缝及切面的形貌、粗糙度、物相及显微组织,结果表明:分别采用这三种辅助气体时,切缝均窄细平直,挂渣量依次增多;垂直度分别为0.08,0.08,0.05m;切面粗糙度分别为2.870,3.554,7.9...  相似文献   

17.
钛合金的激光切割   总被引:5,自引:0,他引:5  
研究了不同辅助气体和工艺参数对激光切割钛合金板的影响,分析了激光切割切缝的断面特征和热影响区特点。试验结果表明,用氩气作辅助气体,切割质量最好;激光功率和切割速度对切缝宽度和热影响区宽度有一定影响;切缝断面可分为形貌不同的两个区,两区之间有明显界线;切缝上表面和下表面热影响区宽度不同,特点为上窄下宽。  相似文献   

18.
钛合金磨料流光整加工表面完整性研究   总被引:1,自引:0,他引:1  
目的 研究磨料流光整加工钛合金格栅表面完整性。方法 用电火花加工制备钛合金试样,通过磨料粒径、加工压力、加工次数的单因素试验,来研究其对试样表面粗糙度和表面形貌的影响规律,选用三种初始粗糙度不同的钛合金试样来进行磨料流光整加工效果试验,对比分析磨料流光整加工对试样表面残余应力的影响,进行加工次数的单因素试验研究磨料流加工过程中其对工件表面显微硬度的影响。结果 对于钛合金试样来说,磨料粒径和加工压力越大,表面抛光效果越明显,表面粗糙度就越低。当磨料粒径从38 μm增加到420 μm时,相对应的表面粗糙度值Ra从5.815 μm降低到0.824 μm;当加工压力从8 MPa增加到24 MPa时,相对应的表面粗糙度值Ra从4.314 μm降低到1.398 μm。而随着加工次数的增加,表面粗糙度值Ra从整体上呈现下降趋势,最后趋于稳定,当加工次数从10增加到80时,相对应的表面粗糙度值Ra从5.925 μm降低到0.307 μm,并且最后稳定在0.300 μm附近。钛合金试样经磨料流光整加工之后,表面残余应力由原来的拉应力变成了压应力。随着加工次数的增加,钛合金试样表面显微硬度整体上呈现先减小后增大的趋势,当加工次数从10增加到50时,显微硬度值从532.83HV降到357.73HV,当加工次数从50增加到90时,显微硬度值从357.73HV上升到393.48HV,试样表面显微硬度的均匀性也显著增加。结论 增大磨料粒径和加工压力或者增加加工次数,都能降低工件表面粗糙度,钛合金工件经过磨料流光整加工之后,表面完整性有较大改善。  相似文献   

19.
《硬质合金》2016,(5):350-355
本文通过单因素试验,研究了磨料水射流切割微晶复合材料时射流压力、靶距、切割速度和磨料流量对光滑区粗糙度的影响规律,进行了正交试验,得出了磨料水射流各工艺参数对光滑区粗糙度影响的重要程度主次顺序,并且得出了最优工艺参数组合。试验结果表明:在磨料水射流切割微晶复合材料时,射流压力增加,光滑区粗糙度先减小后增加;靶距增加,粗糙度增大;切割速度增加,粗糙度增大;磨料流量增加,粗糙度减小。优化后的加工工艺参数为:射流压力260 MPa、靶距4 mm、切割速度144mm/min、磨料流量590 g/min。  相似文献   

20.
目的研究钛合金腐蚀加工液中钛离子的去除方式,为化学铣切溶液的循环再生提供理论依据。方法向钛合金化学铣切溶液中加入沉淀剂去除过量钛离子,借助紫外分光光度计表征溶液中钛离子的去除效果,通过扫描电镜、能谱仪、X射线衍射仪研究沉淀物的成分及其组织结构,通过调整滤液成分检测循环溶液的化学铣切能力。结果当钛合金化学铣切溶液中钛离子质量浓度达70~90 g/L时,金属离子导致溶液黏稠,溶液腐蚀加工性能变差,化学铣切溶液很难继续溶解钛合金。通过向该溶液中加入盐类物质,发现当加入氟化钾时,溶液中的钛离子去除率最高,可达90%以上。检测发现,经水洗干燥后的钛离子沉淀物为纯净的氟钛酸钾晶体。通过补加酸液和添加剂,溶液可重新恢复化铣性能,化学铣切速度和试样表面粗糙度均满足工业要求。结论钛合金化学铣切溶液通过沉淀钛离子再调整可循环使用,提高了化学铣切溶液的使用寿命,减少了污染物排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号