首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于TC17合金β跨相区锻造试验,研究了始锻温度、变形程度、锻后冷却方式对TC17钛合金组织和性能的影响。试验表明:TC17钛合金的显微组织演变和室温力学性能对于β锻造参数表现出不同程度的敏感性;随着始锻温度的升高,晶粒细化程度增大,不同的始锻温度可显著影响合金的强度;通过增大合金的变形程度可显著改善组织中的残留魏氏组织,进而对强度产生较大影响,合金内部粗晶组织的变形不均匀化进一步增强;锻后冷却方式为缓冷时,晶内次生α相长度增加,可有效提高合金的断裂韧性。在始锻温度为918℃、变形程度为60%、锻后冷却方式为缓冷的条件下,TC17钛合金的室温力学性能匹配较佳。  相似文献   

2.
研究了β相区等温变形温度、变形程度对TC18钛合金显微组织和力学性能的影响,讨论了工艺、组织和性能之间的关系。结果表明,TC18合金显微组织对等温锻造温度的变化比较敏感,两相区等温锻造和单相区等温锻造的显微组织分别为双态组织和网篮组织;与两相区锻造相比,β相区锻造获得了更高的强度和断裂韧性,但塑性有所降低,且随着变形温度的升高,强度和塑性均呈现下降趋势,断裂韧性稍有升高。β相区变形量较小时,组织遗传性导致合金保留了部分魏氏组织形貌,塑性较低,断裂韧性较高;当变形量达到60%时,晶粒破碎程度大,次生片状α相发生一定程度球化并弥散分布,组织变得均匀细小,合金强度和塑性保持良好的匹配,断裂韧性较高,综合性能最好。  相似文献   

3.
研究了TC21钛合金在5.5×10-4s-1恒应变速率、40%变形程度条件下,等温锻造温度变化对锻件组织和性能的影响。结果表明:TC21钛合金显微组织对温度变化敏感,在两相区锻造时,显微组织由初生α相和β转变组织组成,并且随着变形温度的提高,初生等轴α相的含量逐渐减少,晶粒尺寸增大;在相变点温度锻造时得到网篮组织;在相变点以上温度锻造时得到片状组织。室温拉伸强度和断裂韧性随锻造温度的升高呈现增加趋势,室温拉伸塑性明显降低。在965℃等温锻造时,显微组织为较细的片状组织,强度、塑性和断裂韧性达到较佳匹配,获得较好的综合力学性能。965℃为较佳等温锻造温度。  相似文献   

4.
通过改变时效温度研究热处理制度对β锻造后TC17钛合金显微组织和力学性能的影响,并根据其服役要求选择较佳的热处理制度。结果表明:随着时效温度的升高,显微组织中晶内次生片层状α相集束尺寸增大,位向关系变得简单,β相转变组织含量增多,合金的强度减小,塑性及断裂韧性升高,采用800℃×4 h,WC+660℃×8 h,AC较佳热处理制度,TC17钛合金的室温拉伸性能、断裂韧性及高、低周疲劳性能均满足技术标准要求,且各项力学性能匹配良好。  相似文献   

5.
采用β热模锻工艺生产了某型号航空发动机压气机用TC17钛合金整体叶盘,分析了整体叶盘的显微组织并测试了力学性能。结果表明,β热模锻工艺生产的整体叶盘具有典型的网篮组织,原始β晶粒沿变形方向拉长,无明显再结晶;晶界α相呈弯折断续分布,晶内针状α相呈网篮状编织。这种网篮组织的TC17钛合金β锻造整体叶盘具有较优的综合力学性能,室温拉伸、高温拉伸、蠕变、断裂韧性和高周疲劳性能均符合设计要求,且有较大的富裕量。  相似文献   

6.
激光立体成形Ti60合金组织性能   总被引:1,自引:0,他引:1  
研究激光立体成形(Laser Solid Formed,LSF)Ti60合金热处理(双重退火980℃,2hAC+650℃,3hAC)前后的组织形成规律,分析其在室温和高温(600℃)下的拉伸性能。研究发现:Ti60合金在激光立体成形过程中由于熔池顶部形成的等轴晶层占有一定的比例,在熔覆新层时未被完全覆盖,在整个熔覆层中呈现出等轴晶的宏观形貌,并出现了层带组织。Ti60合金激光沉积态显微组织为魏氏组织,由大量沿原始等轴β晶界向晶内生长的α板条束和少量板条间β相组成,成形件室温和高温强度分别高于锻造件,室温塑性比锻造件低,而高温塑性超过锻态;经过双重退火后,成形件中的层带组织消失,晶界α相被打断,不连续分布在原始的β晶界处,晶内α板条粗化,并部分球化,这使得室温和高温强度略有下降,但塑性增高,综合力学性能提高。  相似文献   

7.
等温锻造温度对TC18钛合金组织性能的影响   总被引:3,自引:2,他引:1  
研究了TC18钛合金在5.5×10-4s-1恒应变速率下、60%大变形等温锻造时,温度变化对合金组织和性能的影响.结果表明:显微组织对温度变化敏感,在两相区锻造时,显微组织由初生α相和β转变组织组成,随着锻造温度的升高,初生α相的含量逐渐减少,尺寸增大,等轴化程度增加;在相变点以上锻造时为魏氏组织.室温和高温拉伸强度随锻造温度的升高不断增加,拉伸塑性不断降低,室温冲击韧性也呈下降趋势.在860℃等温锻造时,显微组织为双态组织,强度和塑性达到最佳配合,获得良好的综合力学性能.860℃为较佳等温锻造温度.  相似文献   

8.
研究了近等温锻造温度对Ti2A1Nb/Ti60双合金焊接接头显微组织和力学性能的影响.结果表明:经不同温度近等温变形及相同热处理后,Ti2A1Nb/Ti60双合金试样焊缝组织得到明显细化,强度和塑性得到提高,均高于基体Ti60合金;随着变形温度的升高,Ti60合金热影响区显微组织中初生等轴α相逐渐减少,β转组织增多,片状α相变短变粗.因此,合金的室温拉伸强度逐渐升高,塑性逐渐下降;变形温度为1010℃的试样,其焊缝熔合区显微组织较为均匀,塑性相B2含量较多,焊件室温及600℃高温拉伸均表现出较好的强度与塑性匹配.  相似文献   

9.
对TC21钛合金进行准β锻造,再进行固溶时效热处理实验,研究了不同固溶时效热处理制度对合金的微观组织和力学性能的影响。结果表明,TC21钛合金通过准β锻造后,再经固溶时效热处理工艺处理后,合金的微观组织呈现典型的网篮组织。随着固溶温度的上升,片状α相含量和长度显著降低,同时合金强度增加,而塑性变化呈相反趋势。随着时效温度的上升,对片状α相的影响略小,但次生α相的厚度此时显著增加,此时合金强度降低,塑性提高。断口形貌则随着固溶温度的升高,断口表面和裂纹扩展路径愈发平坦。断裂韧性值呈现下降趋势,但会随着时效温度的升高而提高。合金最大断裂韧性值可达66MPa·m1/2。考虑合金的强度、塑性和断裂韧性之间的良好匹配,经综合分析可得,TC21钛合金准β锻后最佳热处理制度为:870 ℃/2 h,AC+590 ℃/4 h,AC。  相似文献   

10.
研究锻造温度对TC21钛合金锻板组织和力学性能的影响。试验选用3件规格为Φ300 mm×400 mm的TC21棒料,经制坯完成后进行锻造。采用相同锻造变形量,锻造温度分别为Tβ+15℃、Tβ+30℃、Tβ+45℃,进行显微组织观察和室温拉伸试验分析。试验结果表明,TC21锻板在相变点以上变形时,随着锻造温度升高,试样短横向、长横向和纵向室温抗拉强度Rm和室温屈服强度Rp0.2升高。由于锻造温度在相变点以上,所以3块锻板的低倍呈清晰晶,且随着锻造温度的升高,清晰度增加,晶粒增大。同时,3块锻板的显微组织为网篮组织,由多个平直的束状α相互相交错排列形成,随着锻造温度升高,α相排列方向一致性增强,长条α相含量增加,α相厚度和长度增加。  相似文献   

11.
研究了TC11钛合金β锻造和固溶温度对组织和力学性能的影响。结果表明:β转变温度以下35℃锻造后,其显微组织中的初生α相含量显著减少,合金强度下降,塑性升高;固溶温度对合金组织影响显著,随固溶温度升高,其显微组织中的初生α相含量减少,合金的强度下降,塑性先升高后下降,960℃时达到最大值。  相似文献   

12.
研究了α+β锻造、近β锻造和β锻造对TC17钛合金盘件的显微组织和主要力学性能的影响规律。结果表明:α+β锻造后的合金为等轴组织,近β锻造的合金为双态组织,β锻造的合金为网篮组织,3种工艺获得的显微组织较为典型;3种锻造组织的力学性能差异显著,等轴组织的室温拉伸强度较双态组织稍低,塑性最好,疲劳强度最高,但断裂韧性和蠕变性能相对较差;双态组织的拉伸强度最高,塑性较等轴组织稍有降低,蠕变性能相对等轴组织有较大提高,但其断裂韧性和疲劳强度相对较低;网篮组织的拉伸强度和塑性相对较低,但断裂韧性和蠕变性能均高于另外两种锻造组织。  相似文献   

13.
研究等温和近等温锻造变形温度对电子束焊接的异种合金(Ti2AlNb金属间化合物与TC11两相钛合金)焊接界面的显微组织与接头拉伸性能的影响。采用OM、SEM对焊缝区组织及拉伸度样断口进行观察,并对接头的拉伸性能进行研究。结果表明:电子束焊接的Ti2AlNb/TC11异种合金焊接界面的显微组织和接头的拉伸性能对变形温度敏感,在950℃变形后,位于焊缝一侧的Ti2AlNb合金中O相的含量大大增加,而位于焊缝另一侧的TC11合金为等轴α相和条状α相的混合组织,但焊缝上仍可见到断续相连的晶界α/α2相;在1010℃变形后,TC11合金具有魏氏体组织特征,这时焊缝上的晶界α/α2相完全断开;经950℃变形的试样在室温拉伸时,在Ti2AlNb合金中发生脆性断裂,这与O相不易协调变形有关,经500℃高温拉伸时,合金表现出较高的强度和较好的塑性,这是由于焊接界面的α/α2相颗粒较小,断裂位置转移到TC11钛合金上所致;经1010℃变形的试样表现出一定的强度,但是塑性严重下降,这与TC11钛合金的魏氏组织特征有关;因此,异种合金进行等温变形时,须严格控制变形温度。  相似文献   

14.
对Φ200 mm×80 mm Ti6246合金棒坯在985℃(β锻造)、935℃(近β锻造)、900℃(α+β锻造)3种温度下进行锻饼试验,考察锻造温度对饼坯显微组织和力学性能的影响。结果表明:采用β锻造工艺,获得的显微组织为片层状α相+β转变组织;采用近β锻造工艺,可获得由球形α相+片层状α相+β转变组织构成的“三态组织”;采用α+β锻造工艺,可获得与原始组织相同的球状α相+β转变组织,但锻造后球状α相含量减少。随着锻造温度降低,Ti6246合金饼坯的室温和高温抗拉强度及屈服强度呈现先降低再升高的趋势,伸长率无显著变化;高温蠕变性能无明显变化趋势;427℃下热暴露100 h后,室温抗拉强度和屈服强度呈现先升高再降低的趋势,塑性指标无显著变化。  相似文献   

15.
研究了TB8合金在不同变形条件下的超塑性及其显微组织。结果表明,变形温度为690~840℃、应变速率为1.0×10~(-4)~1.0×10~(-3)s~(-1)时,TB8钛合金均具有超塑性。750℃、1.0×10~(-4)s~(-1)拉伸时,合金塑性最佳,伸长率为524.9%。变形过程中,变形软化和加工硬化相互抵消,表现为传统的超塑性变形稳态流动特征。变形温度、应变速率和变形程度对合金的超塑性、显微组织均有明显影响。应变速率越低,等轴β相晶粒尺寸越大。拉伸温度升高,β相晶粒尺寸增大,α相颗粒逐渐被溶解,β相饱和化,但仍能保持一定的等轴度。随着变形程度增大,β相晶界和基体弥散析出的α相越多,细小、弥散分布的α相可以抑制晶粒的过分长大,使合金塑性得到改善。  相似文献   

16.
为了提高TC8-1钛合金的性能,对TC8-1钛合金热处理制度进行研究。通过采用不同固溶温度和时效温度处理,分析了热处理制度对TC8-1钛合金显微组织和力学性能的影响。结果表明:随着固溶温度的升高,合金中等轴初生α相含量由65%下降至25%,β转变组织明显粗化,合金由等轴组织转变为双态组织,合金的室温强度降低,而塑性略有提高;随着时效温度的升高,合金中等轴初生α相含量无明显变化,合金的抗拉强度略有降低,而塑性无明显变化。经930℃×2 h,空冷(AC)+580℃×1 h,空冷(AC)热处理后,TC8-1钛合金可获得强度与塑性的较佳匹配。  相似文献   

17.
钛合金β晶粒生长规律及晶粒尺寸对损伤容限性能的影响   总被引:1,自引:0,他引:1  
分别对α+β两相区及β单相区锻造的TC4合金在相变点以上温度保温,然后对不同温度条件下原始β晶粒尺寸进行统计,并测试了几种不同晶粒尺寸下的疲劳裂纹扩展速率及断裂韧性.晶粒尺寸统计结果显示:原始β晶粒尺寸不仅与热处理温度和时间有关,也与锻造工艺有关.原始β晶粒尺寸与保温时问呈指数关系;在1 h条件下原始β晶粒尺寸并不总是随温度的升高一直增大,在某个温度范围内有一极值;锻造工艺不同,原始β晶粒尺寸波动也不同.从晶粒生长的热力学及动力学两方面对上述现象进行了分析.力学性能结果显示晶粒尺寸对裂纹扩展速率及断裂韧性均有影响,并对影响机理进行了分析.  相似文献   

18.
研究了跨相区等温锻造时不同变形量分配对TC18钛合金显微组织和力学性能的影响,讨论了跨相区锻造组织和性能之间的关系。结果表明:跨相区等温锻造锻件的显微组织与两相区变形量密切相关。两相区较小变形时,显微组织和单相区接近,晶界α明显,锻件力学性能和全β锻造没有太大差别;两相区较大变形时,锻件的显微组织趋于不均匀,片状α相和球状α相同时存在,锻件强度升高,塑性基本保持不变,断裂韧性较两相区较小变形时明显下降。  相似文献   

19.
研究了固溶时效热处理对多向锻造TiBw/Ti复合材料组织和力学性能的影响。实验表明:当固溶温度为950℃时,复合材料的基体为双态组织,TiBw沿初生α相分布;固溶温度为1050℃时,等轴α相转化为片层α相和α集束,β晶界出现,TiBw沿β晶界分布;固溶温度为1150℃时,复合材料的基体组织为魏氏组织,β晶界进一步扩大,α集束更加细长,TiBw沿β晶界或α集束分布。经热处理后,TiBw/Ti复合材料的室温抗拉强度和屈服强度随着固溶温度升高而增加,但室温塑性呈现相反趋势。  相似文献   

20.
研究了β锻造时不同变形参数下、TC25合金的微观组织演变过程及拉伸性能变化规律。结果表明,随变形量的增大,微观组织由取向一致的魏氏组织逐渐转变为杂乱交织的网篮组织;随变形温度的升高锻件组织分别为三态组织、网篮组织,最后为取向一致的α片束状组织,组织不均匀性急剧增大,出现断续晶界α或连续晶界α及大块α组织。其中三态组织、无序杂乱的网篮组织及少量的晶界α和大块α组织有利于提高合金锻件的高温拉伸强度。为了获得具有优良高温强度的合金锻件,变形参数有两个可选范围:一是变形温度在Tβ+15℃左右、变形量35%~50%;另一是变形温度在Tβ+35℃左右、变形量45%~60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号