首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
江会磊  王贺权 《热加工工艺》2022,(2):97-100,105
应用ABAQUS软件,对4种不同的TiAl合金涂层模型进行不同压力下的振动模拟试验.分析发现,同一模型所受压力越大,TiAl合金阻尼性能越好.采用LAMMPS分子动力学软件和Atomeye可视化软件进行进一步分析,发现了在不同压力作用下微观结构变化对模型阻尼性能的影响,并获得了不同缺陷对模型阻尼性能的影响规律.  相似文献   

2.
为了研究空位缺陷对γ-TiAl涂层阻尼性能的影响,采用分子动力学方法(MD)对不同空位浓度的γ-TiAl涂层模型进行往复振动模拟计算。比较分析了应力-应变、储存势能、位错线密度、缺陷面积的变化及微观结构的变化机理。结果表明:随着空位浓度的升高,γ-TiAl涂层能耗逐渐增加,弹性模量逐渐减小,涂层提前发生疲劳破坏;不同空位浓度γ-TiAl涂层的储存势能均呈周期性变化,变化幅度随空位浓度的升高而逐渐减小;在振动模拟过程中,空位缺陷会演化为位错线及其它缺陷,导致位错密度和缺陷面积升高,不同缺陷的运动、演化及湮灭是γ-TiAl涂层产生能耗的主要来源;另外,高空位浓度的γ-TiAl涂层内部产生较多的塑性变形,出现颈缩和孔洞等缺陷,使阻尼发生失效。  相似文献   

3.
纳米切削会造成工件的内部微观缺陷,这种缺陷会引起残余应力的变化进而影响工件的表面质量,而这种缺陷结构与切削层初始温度有密切联系。为降低工件纳米切削加工制造中的缺陷,采用分子动力学的方法,构建了含有切削层的单晶铜纳米切削模型。首先,通过分析工件结构体积及微观缺陷的变化确定了切削层的适用初始温度;其次,分析了切削层初始温度对切削力的影响,并在不同初始温度和切削力作用下对单晶铜位错和晶格等微观结构的变化进行了分析;最后,通过实验对仿真结果进行了间接验证。结果表明:单晶铜切削层初始温度的可选范围为293~400 K;在此范围内,随着切削层初始温度的升高,切削力大小变化显著,但波动平稳,晶格结构的转变速度也随之增快;当切削层初始温度设为360~390 K范围内时,单晶铜工件的表层微观缺陷相对较少,由此可预测单晶铜工件在此初始温度范围内加工得到的表面质量较高。  相似文献   

4.
本研究主要运用分子动力学的模拟方法,研究了拉伸速率为10~(10) s~(-1)下温度对于单晶镁性能的影响,并对结果进行应力应变分析,势能应变分析,共近邻分析,位错密度分析等。结果表明:随着温度的升高,单晶镁的抗拉强度峰值降低,各峰值点对应的应变值随着温度的升高逐渐减小;在应力峰值出现前hcp首先转化成Other结构且没有位错产生,在应力峰值过后fcc,bcc结构出现,同时产生位错,其中位错主要为1/31100位错和未知结构位错,对应的晶体结构的转化与位错的产生大约滞后应力峰值点0.5%的应变值,并且温度对于滞后值的影响不大,晶体结构的转化和位错的产生也随着温度的升高提前发生。  相似文献   

5.
通过改变TiAl中Al的含量,用分子动力学方法研究了Al含量对含有裂纹的单晶TiAl试件性能及裂纹扩展的影响,分析了不同Al含量下的应力-应变曲线,缺陷的演化过程。模拟结果表明:Al含量不同,材料的弹性模量和强度也不同。Al含量低于45 at%时,由于层错和位错的产生以及位错反应和运动产生的空位和空位的迁移提高了试件的塑性使得试件表现出良好的塑性,而大于该含量时,试件呈明显的脆性;Al含量较低时,裂纹以塑性变形的方式扩展,Al含量较高时,裂纹以脆性方式断裂。即Al含量会影响材料的性能;随着Al含量降低,试件的塑性增强,此外,Al含量对裂纹的扩展机制也有很大影响。  相似文献   

6.
针对面心立方金属铱单晶独特的韧脆变形特征,采用分子动力学方法研究了纳观尺度下的铱单晶在不同温度下的拉伸变形行为。通过分析不同温度拉伸过程中的应力应变关系,势能变化和原子构型图,认为随着温度的上升,纳米级铱单晶沿[100]晶向的弹性模量逐渐下降,抗拉强度也逐渐降低。温度为300 K时拉伸变形过程中在晶体内仅有少量空位和位错产生,600和800 K拉伸变形过程中在晶体内有滑移,位错和空位产生。  相似文献   

7.
利用分子动力学方法研究了镍基单晶合金在剪切载荷下的裂纹扩展和微观结构演化,分析了应力-应变、势能和裂纹生长速率的变化。同时,揭示了温度和剪切应变率对裂纹扩展和微观结构演化的影响。结果表明,临界分切应力随温度的降低和应变速率的增大而增大;随着温度的升高以及剪切载荷下发生剧烈的热运动,裂缝表现为加速扩展的趋势;而在较高的应变率影响下,会形成位错塞积和孪晶,出现加工硬化现象。  相似文献   

8.
目前拉伸载荷下的镍基单晶合金的力学性能研究较为广泛,而剪切载荷对镍基单晶合金的力学性能也十分重要但缺乏研究。本文利用分子动力学方法研究了镍基单晶合金在剪切载荷下的裂纹扩展和微观结构演化,分析了应力-应变、势能和裂纹生长速率的变化。同时,揭示了温度和剪切应变率对裂纹扩展和微观结构演化的影响。结果表明,临界分切应力随温度的降低和应变速率的增大而增大;随着温度的升高以及剪切载荷下发生剧烈的热运动,裂缝表现为加速扩展的趋势;而在较高的应变率影响下,会形成位错塞积和孪晶,出现加工硬化现象。  相似文献   

9.
TiAl合金虽然具有很多优良性能,在航空航天和汽车工业广泛运用,但其室温脆性、断裂韧性还有待解决。本文通过改变TiAl中Al的含量,用分子动力学方法研究了Al含量对含有裂纹的单晶TiAl试件性能及裂纹扩展的影响,分析了不同Al含量下的应力-应变曲线,缺陷的演化过程。模拟结果表明:Al含量不同,材料的弹性模量和强度也不同。Al含量低于45at%时,由于层错和位错的产生以及位错反应和运动产生的空位和空位的迁移提高了试件的塑性使得试件表现出良好的塑性,而大于该含量时,试件呈明显的脆性;Al含量较低时,裂纹以塑性变形的方式扩展,Al含量较高时,裂纹以脆性方式断裂。即Al 含量会影响材料的性能;随着Al含量降低,试件的塑性增强,此外,Al含量对裂纹的扩展机制也有很大影响。  相似文献   

10.
运用分子动力学方法对不同温度下TiAl合金的微裂纹扩展过程进行了研究,建立了TiAl合金分子动力学模型,通过共同近邻分析和位错分析得到了其在微观尺度下裂纹扩展的变形机制,并采用扫描电镜原位拉伸TiAl涂层试验对模拟结果进行了验证。结果表明,在分子动力学模拟和扫描电镜原位拉伸试验中均可见裂纹向前方[100]晶向扩展,在临近孔洞时,裂纹扩展路径向[110]晶向扩展。在应力加载过程中,体系会发生裂纹尖端钝化、孔洞引导裂纹扩展改变初始扩展方向以及边界塞积等现象。随着温度的升高,原子的活性增强,热运动加剧,裂纹钝化速度增加,裂纹扩展速度变慢。体系的能量随着温度的升高而增加,当温度为500 K时,应力达到最大。温度为300~500 K时,TiAl合金的抗塑性较好,晶体结构较稳定,温度为500~1100 K时,体系易发生塑性变形,引发位错增殖,原因是1/2<110>(Perfect)位错与1/6<112>(Shockly)位错在裂尖前方塞积抑制了裂纹的扩展。  相似文献   

11.
为探究双孔洞位置排布对于镁及镁合金塑性变形的影响,应用分子动力学方法模拟在300K下含不同排布位置的双孔洞镁单晶c轴压缩模型,结合3种模型的应力-应变曲线、势能曲线、径向分布函数和位错密度曲线,分析不同排布位置双孔洞镁单晶的压缩力学性能和结构演化过程。结果表明:双孔洞镁单晶在与加载方向平行时可承受的压应力峰值和势能峰值以及对应的应变程度最大,与加载方向垂直时次之,当与加载方向呈45°排布时最小,且与c轴呈90°排布的双孔洞镁单晶模型孔洞闭合速率最快。  相似文献   

12.
借助热模拟试验机研究TiAl合金在变形温度为1273~1523 K、应变速率为0.001~1 s~(-1)和变形程度为50%条件下的热变形行为;分析流变应力曲线特征,构建基于应变补偿的物理本构模型;考虑TiAl合金的弹性模量和自扩散系数与温度的关系,基于动态材料模型建立该合金的加工图,确立合适的热加工工艺参数。结果表明:TiAl合金具有正应变速率敏感性和负温度敏感性,流变应力曲线主要表现为动态再结晶软化机制;所建立的物理本构模型的预测值与实验值具有较好的吻合度;根据加工图的分析,该合金适宜的变形参数范围为1360~1523K、0.001~0.02 s~(-1)。  相似文献   

13.
基于晶体塑性理论,给出了同时考虑位错滑移、形变孪晶和晶界变形的近片层组织TiAl本构模型;在此基础上,建立基于Voronoi算法的近层片TiAl三维多晶有限元模型,并在晶粒交界处引入壳单元来描述晶界;利用上述有限元模型,对不同温度(室温、500和700℃)和不同拉伸应变率(10-3、320、800和1 350 s-1)下近层片TiAl的塑性力学行为进行数值模拟。结果显示:模拟得到的应力塑性应变曲线与试验结果吻合较好,能够反映近层片TiAl在不同温度和应变率下的材料响应;由于晶界的存在,晶粒内的应力分布会发生明显改变,晶界附近产生一定的应力集中。此外,晶界对孪晶存在一定的阻碍作用,使得晶界附近实体单元的孪晶体积分数要略低于多晶整体的平均孪晶体积分数。  相似文献   

14.
建立晶粒尺寸梯度分布的表面纳米晶材料本构模型。运用分子动力学模拟软件,得到了梯度单晶铜试样的拉伸应力-应变曲线以及原子构型图。结果表明:计算得到的应力-应变曲线与实验数据大体一致。这种梯度结构使得材料的整体流变应力增加了10%以上。随着应变的增大,曲线会有一段隆起的部分,这与位错的形核以及晶界的限制紧密相关。当应变增加到3%、7%时,小晶粒区域先有位错运动,然后产生堆积缠绕,起到了强化作用。并且,大晶粒使得位错更易从小晶粒向大晶粒区域运动,从而抑制了小晶粒区域裂纹的形成,提高了材料的延展性。  相似文献   

15.
基于嵌入原子势的分子动力学模拟分析了单晶Ni_(3)Al的裂纹扩展机理和显微组织演化。首先,通过设置初始裂纹并对拉伸速率恒定时的单晶Ni_(3)Al模型进行单轴拉伸,模拟了裂纹尖端的形状和微观结构的变化,从模拟结果可以观察到在裂纹尖端产生了位错堆积现象,扩展后的裂纹方向与位错线成45°和135°夹角。其次,分别讨论了温度对5×10^(-11)s时裂纹尖端应力集中现象、屈服点的抗拉强度以及裂纹扩展速率的影响。研究结果表明:当温度从300 K升温至1300 K时,5×10^(-11)s时裂纹尖端的应力值以线性的形式降低;其屈服点抗拉强度的降低趋势也是线性的,但其应变值增加;高温可有效地减缓裂纹扩展速率。  相似文献   

16.
在变形温度800~1200℃和应变速率0.01~50s-1下,利用Gleeble-3800热模拟试验机对Aermet100钢的高温变形本构关系与微观组织演变进行了研究。结果表明,增加应变速率和降低变形温度都能提高材料的流动应力,延迟动态再结晶发生,使变形材料表现出加工硬化和动态回复。运用位错理论研究了微观组织和流动应力曲线的变化规律并做出了合理的解释。在压缩实验的变形条件下变形激活能为489.10kJ/mol。确定了峰值应力、变形温度和应变速率之间的双曲正弦模型的本构关系。  相似文献   

17.
基于位错理论建立了Ni单晶微柱压缩变形过程的三维离散位错动力学模型,该模型考虑了晶体塑性变形过程中位错所受的外载荷、位错间相互作用力、位错线张力及自由表面镜像力的影响。应用该模型研究了Ni单晶微柱压缩变形过程中流动应力和变形机制的应变率效应,同时,结合理论分析研究了应变率对流动应力中有效应力、位错源激活应力和位错间弹性相互作用力的影响。结果表明:当应变率较低时,Ni单晶微柱压缩变形中位错源激活应力主导流动应力,位错源激活数量较少,初始位错密度对流动应力影响很小,呈现单滑移变形;随着应变率增加,晶体变形过程中的流动应力随之增加,流动应力中位错源激活应力所占比例逐渐减小,有效应力逐渐主导流动应力,同时激活多个滑移系内的位错源来协调塑性变形;应变率越高,各激活滑移系内的塑性应变贡献相差越小,单晶微柱变形逐渐由单滑移向多滑移机制转变;在高应变率条件下,晶体初始位错密度越高塑性变形过程中流动应力越小。  相似文献   

18.
H68黄铜动态应变时效后的组织与性能   总被引:4,自引:0,他引:4  
在4.76×10-4s-1的应变速率、100K~673K 的温度范围内进行了系列温度拉伸试验、恒应力时效试验以及对动态应变时效(DSA)预处理后微观组织的观察,研究了DSA对H68黄铜组织和性能的影响.结果表明,H68黄铜在250K~600K的温度范围内会出现DSA现象;在DSA温区内,出现屈服应力平台及加工硬化速率峰值.在动态应变时效过程中发生的运动位错与溶质原子之间的交互作用使材料的位错组态发生变化,在相同的预应变量下,随着DSA预处理的温度升高,材料的位错密度提高,形成更复杂、更稳定的位错组态.  相似文献   

19.
在本文,通过分子动力学模拟方法建立了单晶γ-TiAl合金的纳米切削模型和拉伸模型,其主要分析不同的切削深度对工件拉伸性能的影响。一方面,详细的研究了晶格转变和微观缺陷演化之间的关系;另一方面,系统的探讨了不同的切削深度对应力-应变曲线、位错形核位置和工件断口位置的影响。研究结果表明:在纳米切削阶段,晶格转变的数量会随着切削深度的增加而增多并且与微观缺陷演化具有一致性。在一定的切削深度范围内工件的屈服应力和弹性模量会相应的提高。另外,切削深度对工件的位错形核位置和断口位置有较大影响,经过加工的工件位错形核于工件的亚表面,而未经过加工的位错形核于工件的边界处,工件的断口位置随着切削深度的增加越靠近拉伸端。  相似文献   

20.
铸造镍基高温合金K52的低周疲劳行为   总被引:6,自引:0,他引:6  
姚俊  郭建亭  袁超  李志军 《金属学报》2005,41(4):357-362
研究了抗热腐蚀铸造镍基高温合金K52在室温和900℃的低周疲劳行为.对循环应力-应变数据和应变-疲劳寿命数据进行了分析,给出了K52合金在此温度下的疲劳参数.合金的循环应力响应行为在室温下呈现循环硬化,而在900℃时则呈现循环软化,原因在于循环形变过程中位错之间以及位错与析出相之间的相互作用.疲劳断口宏观和微观分析表明:裂纹主要萌生于试样表面或靠近表面的缺陷处;裂纹形成后垂直于加载轴方向扩展,试样呈穿晶断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号