首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过高温热压缩实验研究喷射成形7055铝合金的热变形行为,实验温度为340~480℃,应变速率为0.001~1 s~(-1)。结果表明:该合金在变形过程中的流变应力随着温度升高和应变速率的降低而降低,在480℃时会出现失稳现象。变形过程中的主要软化机制为动态回复和动态再结晶,其中低温时,动态回复占主导地位,随着温度升高,软化机制逐步转变为动态再结晶,再结晶晶粒的尺寸随着温度的升高而增大。基于动态材料模型和极化互惠模型,结合热变形中的组织演变,确定该合金在应变量为0.7时的适宜加工范围为:温度范围400~420℃,应变速率0.01~0.1 s~(-1),此时对应的动态材料模型加工图能量耗散效率超过33%,极化互惠模型加工图内在加工参数在65%~70%之间。  相似文献   

2.
采用Gleeble热模拟试验机对2124铝合金进行热压缩试验,通过分析合金在高温塑性变形过程中的流变应力变化规律,以及利用光学显微镜和透射电镜观察合金在热变形过程中的显微组织演变,探讨了不同变形温度和应变速率对合金热塑性变形能力的影响。结果表明,2124铝合金在热变形中的流变应力稳态值随热变形温度的升高或应变速率的减小而增大,可用双曲正弦形式的本构方程来描述热变形条件和流变应力的关系,合金的变形激活能为170.13 k J/mol。在较低变形温度或较高应变速率下,热变形后合金组织中存在大量位错缠结和位错墙,软化机制主要为动态回复。随变形温度的升高或者应变速率的降低,该合金组织中出现了再结晶晶粒,软化机制逐渐向动态再结晶转变。  相似文献   

3.
GH625合金的动态再结晶行为研究   总被引:1,自引:0,他引:1  
采用Gleeble-3800热模拟试验机研究了GH625合金在变形温度为950~1150℃,应变速率为0.001~5s-1条件下的热变形特性,并用OM和TEM分析了变形条件对微观结构的影响。结果表明:当应变量很小时,该合金没有发生再结晶,直到应变量达到0.1时才开始有再结晶晶粒析出。随着变形温度的升高,再结晶晶粒尺寸增大,位错密度降低;当温度较低时显微结构中可以观察到孪晶。当变形温度一定时,随应变速率的增大,再结晶的形核率增大且晶粒变小,位错密度变大;而当应变速率较低时,再结晶进行得比较充分,晶粒尺寸较大。根据实测的应力-应变曲线,获得了该合金发生动态再结晶的临界应变εc和峰值应变εp与Z参数之间的关系:εc=2.0×10-3.Z0.12385,lnεp=-6.02285+0.12385lnZ。此外,还采用定量金相法计算出了合金的动态再结晶体积分数,并建立了该合金动态再结晶的动力学模型:Xd=1-exp[-0.5634(ε/εp-0.79)1.313]。  相似文献   

4.
Al-Cu-Mg-Ag合金热压缩变形的流变应力行为和显微组织   总被引:3,自引:0,他引:3  
采用热模拟实验对Al-Cu-Mg-Ag耐热铝合金进行热压缩实验,研究合金在热压缩变形中的流变应力行为和变形组织.结果表明:Al-Cu-Mg-Ag耐热铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大;该合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为196.27 kJ/mol;在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

5.
在变形温度为300~460℃,应变速率为0.001~1.000 s-1的条件下,采用Gleeble-1500热模拟试验机对7B50铝合金的热变形加工行为进行了研究.结果表明,7B50铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大.对该合金进行热变形加工的适宜条件是:热压缩加工温度为380~460℃、应变速率为0.100~1.000 s-1.在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶.随着温度升高和应变速率降低,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

6.
通过 Gleeble-3800 热模拟试验机的热压缩实验,研究了 Ti-62A 合金在 800、850、900 和 950℃,应变速率为 0.001、0.01、0.1 和 1s-1 下的热变形行为和动态再结晶(DRX)规律。结果表明:Ti-62A 合金的流变应力受应变速率和变形温度的影响显著;流变应力随着变形温度的升高和应变速率的降低而降低;在 900~950℃、应变速率 0.01~1s-1 条件下,Ti-62A 合金的热变形应力-应变曲线属于动态回复型;该合金的热变形机制主要由位错运动控制,其动态软化机制包括晶界滑动和位错对消、攀移机制;Ti-62A 合金在热变形过程中,动态再结晶更有可能发生在较高的温度和较低的应变速率下,即 950℃ 和 0.001s-1;基于经典位错密度理论和 DRX 动力学理论,建立了加工硬化—动态回复和 DRX 软化效应的两阶段本构模型。DEFORM-3D 软件的仿真模拟结果证实,基于 DRX 软化效应的本构模型对 Ti-62A 合金在动态再结晶阶段的热变形行为的预测具有较高的准确性,能够为实际生产工艺的制定提供技术参考。  相似文献   

7.
7085铝合金的热变形组织演变及动态再结晶模型   总被引:2,自引:0,他引:2  
通过等温压缩实验,系统研究热变形参数(变形温度、应变速率及应变量)对7085铝合金热变形组织演变的影响。结果表明:升高变形温度以及降低应变速率,均有利于7085铝合金的动态再结晶发生,导致变形后的7085铝合金位错密度降低,再结晶晶粒尺寸增大;随着应变量的增加,变形后的合金位错密度降低,动态再结晶体积分数增大。采用线性回归方法建立包括峰值应变方程、临界应变方程、动态再结晶动力学方程以及动态再结晶晶粒尺寸方程的7085铝合金动态再结晶模型。  相似文献   

8.
对Ti-25V-15Cr-0.2Si阻燃钛合金在温度为950~1100℃,应变速率为0.001~1 s~(-1)条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s~(-1),变形温度为950~1050℃时,动态再结晶使晶粒细化;当变形温度高于1100℃,应变速率低于0.001 s~(-1)时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。  相似文献   

9.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

10.
7B50铝合金热变形组织演变   总被引:2,自引:0,他引:2  
周坚  潘清林  张志野  陈琴 《热加工工艺》2012,41(2):20-23,132
利用Gleeble-1500热模拟试验机对7B50铝合金进行了变形温度300~460℃、应变速率0.001~1 s-1条件下的等温压缩试验,通过金相显微镜(OM)和透射电镜(TEM)等手段,研究分析了该合金在变形过程中热变形参数对微观组织的影响。结果表明:在变形初期,流变应力随应变的增加而增大,达到峰值后逐渐趋于平稳;应力峰值随温度的升高而减小,随应变速率的提高而增大;当变形温度较低或应变速率较高时,合金仅发生了动态回复,且合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中的主要软化机制由动态回复逐渐转变为动态再结晶。  相似文献   

11.
以锻态GH4720Li镍基沉淀强化型高温合金为研究对象,对合金进行了不同工艺参数下的热压缩实验。采用OM、SEM、EBSD和TEM研究了热压缩过程中再结晶晶粒的形成和晶粒内亚结构的演变规律,分析了合金在不同热变形工艺参数下的动态软化机制。研究表明,合金在所有热变形工艺参数下均发生了非连续动态再结晶行为。变形组织分析表明,高温低应变速率能够抑制非连续动态再结晶行为的发生,而提高应变速率能促进非连续动态再结晶行为,且能够获得等轴状尺寸均匀的晶粒组织。未完全溶解细小γ'强化相的钉扎作用能够使变形晶粒内形成高密度位错亚结构和亚晶界,亚晶界角度通过连续的吸收位错而不断地升高,进而以"强化相诱发连续动态再结晶"方式形成细小的再结晶晶粒组织。不同热变形工艺下孪晶界的演变规律分析表明,热变形温度与应变速率通过影响合金的动态再结晶行为来改变孪晶界的数量。  相似文献   

12.
基于热压缩实验得到的数据,获得了45Cr4NiMoV合金在改进的Laasraoui-Jonas(L-J)位错密度模型中的应变软化参数及应变硬化参数,建立了45Cr4NiMoV合金的动态再结晶模型。采用元胞自动机(CA)方法,应用DEFORM-3D软件对45Cr4NiMoV合金热成形过程中的动态再结晶行为进行有限元分析,并与实验得到的微观组织进行对比。结果表明:当应变速率及变形量一定时,较高的变形温度促使45Cr4NiMoV合金位错及晶界迁移运动加剧,其动态再结晶晶粒尺寸随着变形温度的升高而增大,模拟结果与实验结果较为吻合,验证了所建立的L-J位错密度模型的合理性,说明修正的L-J位错密度模型结合CA能准确预测45Cr4NiMoV合金的动态再结晶微观组织演变过程。  相似文献   

13.
对GH4720Li合金在1080~1180℃、应变速率为0.1s~(-1)条件下的双道次压缩过程的热变形行为进行研究。结果表明:动态再结晶是GH4720Li合金的主要软化机制。在双道次压缩间歇期内,合金发生亚动态再结晶、静态再结晶和晶粒长大;低于1120℃的变形间歇期,亚动态再结晶、静态再结晶和晶粒长大的速度缓慢;1120℃及以上温度的变形间歇期,亚动态再结晶、静态再结晶和晶粒长大的速度加快。随变形温度升高和第一道次变形量增大,道次间歇期的亚动态再结晶和静态再结晶速度加快。γ′相在热变形过程中发生协调变形,并发生细化。  相似文献   

14.
基于热压缩实验得到的数据,获得了45Cr4NiMoV合金在改进的Laasraoui-Jonas(L-J)位错密度模型中的应变软化参数及应变硬化参数,建立了45Cr4NiMoV合金的动态再结晶模型。采用元胞自动机(CA)方法,应用DEFORM-3D软件对45Cr4NiMoV合金热成形过程中的动态再结晶行为进行有限元分析,并与实验得到的微观组织进行对比。结果表明:当应变速率及变形量一定时,较高的变形温度促使45Cr4NiMoV合金位错及晶界迁移运动加剧,其动态再结晶晶粒尺寸随着变形温度的升高而增大,模拟结果与实验结果较为吻合,验证了所建立的L-J位错密度模型的合理性,说明修正的L-J位错密度模型结合CA能准确预测45Cr4NiMoV合金的动态再结晶微观组织演变过程。  相似文献   

15.
针对环轧态Ti40钛合金,进行等温恒应变速率高温压缩变形实验,研究合金在应变速率0. 001~1 s~(-1),温度950~1100℃范围变形过程中流变应力和微观组织演变行为,并通过流变应力曲线拟合计算建立合金该变形条件下的流变应力本构方程。实验结果表明:流变应力随着应变量的增加急速升高而后突降,同时流变应力随着应变速率增大而增大,这与位错密度增殖和运动密切相关;当合金变形温度一定时,随着应变速率变小,内部组织发生动态再结晶,平均晶粒尺寸得到细化;但当应变速率一定时,合金在较低应变速率(0. 001 s~(-1))变形时,需适当控制变形温度,才能得到晶粒更细小的均匀组织。  相似文献   

16.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

17.
采用Gleeble-3500热压缩模拟试验机对Al-5Mg-2Li-0.1Zr-0.1Sc铝锂合金在变形温度为623~753 K及应变速率为0.01~10 s-1的热变形条件下进行热压缩试验,利用光学显微镜和电子背散射衍射研究了合金在不同变形条件下的组织演化,构建了合金的热加工图。建立了基于双曲正弦函数的合金热变形特征本构方程。结果表明:合金的变形激活能Q为136.159 kJ/mol,合金的流变应力随着变形温度的升高和应变速率的降低而减小;随着应变速率的增大,流变应力达到峰值应力后,动态软化和加工硬化的影响相互交替,流变应力曲线呈周期性波动。随着变形温度的升高和应变速率的降低,小角度晶界合并为大角度晶界,位错密度逐渐降低,析出相数量减少,变形织构减少,再结晶晶粒长大,动态软化机制转变为动态再结晶。  相似文献   

18.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

19.
对铸态AZ31B镁合金在温度280℃~440℃、应变速率0.001s-1~0.1s-1条件下进行热压缩实验,分析变形程度、应变速率和加热温度对其微观组织变化的影响,探讨合金的热压变形机制。实验结果表明,该合金热变形时发生了动态再结晶。变形温度越高、变形速率越小和变形量越大时,动态再结晶进行的越充分;变形温度越低、变形速率越大和变形量越大时,动态再结晶晶粒越细小。该合金的热变形机制是滑移孪晶联合机制。  相似文献   

20.
《电焊机》2015,(8)
以铸态AZ31B镁合金为研究对象,分别在应变速率为0.005 s-1、0.05 s-1、0.5 s-1,变形温度在300℃、350℃、400℃的条件下,采用热变形模拟实验机对铸态合金进行再结晶行为研究,建立并验证了热变形本构方程、再结晶热力学模型和动态再结晶晶粒尺寸模型。研究表明,晶粒在较低应变速率和较高变形温度下更细,减小了晶界处孪晶位错密度,也为降低后续轧制时边裂现象发生的概率提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号