首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
采用铜模吹铸法制备出Zr44Ti11Ni10Cu10Be25块体非晶合金,并在真空扩散焊设备中与铝箔进行扩散焊接,研究了锆基非晶合金与Al箔进行超塑性扩散焊连接工艺及其连接界面的原子扩散情况。结果表明,元素的扩散情况与试样的变形量有关,但变形量又不完全影响元素的扩散,而是当变形量达到一定值时,温度越高,元素扩散程度越高。当温度达到713K、变形量达到26%时,元素的扩散程度最高。  相似文献   

2.
采用超塑性扩散焊方法,对2 mm厚的锆基大块非晶合金Zr44Ti11Ni10Cu10Be25(vit1b)进行了焊接试验,获得了无界面缺陷的焊接接头,并且试样没有晶化。研究了非晶合金的扩散焊接工艺,根据试验结果提出了该合金优化的焊接工艺参数,探讨了非晶合金的扩散连接机理。研究发现,连接过程中,非晶合金发生了结构驰豫;接头质量与试样变形率的关系较为密切,只有当变形率达到一定值时才可以形成焊接接头。  相似文献   

3.
利用大块非晶在过冷液相区间具有较好的热塑性成形特点,选择锆基非晶Zr60Cu25Al10Fe5和纯Cu,在Zr基非晶过冷液相区内选择合适温度进行热压获得铜/非晶层状复合材料。通过X射线衍射(XRD)、扫描电镜(SEM)和能谱分析仪对该层状复合材料的界面形貌、成分分布以及非晶层的组织稳定性进行了研究,并对所制备的Zr基非晶/Cu层状复合材料室温压缩性能进行测试。结果表明:在温度为693 K,外载荷为150 MPa下,保温90 min,可以制备出Zr基非晶/Cu层复合材料,该复合材料的非晶层没有发生晶化,界面形成了一层原子扩散层,达到了良好的结合,该层状复合材料的压缩强度为850 MPa,并表现出一定的室温塑性,其室温强度满足复合材料的混合定律。  相似文献   

4.
在水冷铜坩埚中采用铜模吸铸法以不同的浇注温度制备出四个一组直径3 mm的Zr55Al1ONi5Cu30合金试样,研究了浇注温度对锆基块体合金非晶形成能力、力学性能和组织的影响.研究结果表明,提高浇注温度可以增加锆基块体合金非晶形成能力和热稳定性;当铸造电压从7 kV提高至10 kV时,过冷液相区△Tx和参数γ分别从73 K增至89K,从0.413增至0.417;同时在一定温度范围内提高浇注温度可以提高错基块体非晶合金的压缩断裂强度和轻微的降低塑性.当铸造电压升高至10 kV时,不但可以提高Zr55Al10Ni5Cu30合金试样的压缩断裂强度,同时提高其塑性,并对此原因进行了分析.  相似文献   

5.
范龙  何鹏 《焊接》2020,(6):47-50,56
对TiAl合金直接扩散焊接和使用置氢0.5%(质量分数) TC4钛合金与TiAl合金的扩散焊接开展了研究,使用了SEM,EDS,XRD和抗剪强度试验等方法分析了焊接接头的组织和性能,研究了焊接温度、连接时间和焊接压力对接头界面及力学性能的影响。结果表明,当工艺参数为1 473 K/60 min/30 MPa时,TiAl合金直接扩散焊接界面孔洞完全消失,接头抗剪强度达到285 MPa;采用置氢0.5% TC4钛合金作为中间层扩散焊接TiAl合金时,当工艺参数为1 123 K/30 min/15 MPa时,扩散焊接界面的孔洞消失,并有一定厚度的反应层生成,接头抗剪强度可达290 MPa,断口界面相组成主要为TiAl,Ti3Al,TiAl2和Ti3Al5等脆性相;相对于TiAl合金直接扩散焊接,采用置氢0.5% TC4合金为中间层扩散焊接TiAl合金能大幅降低TiAl合金扩散焊接工艺参数。  相似文献   

6.
通过压力-浸渗法制备多孔SiC陶瓷/Zr基非晶合金复合材料。利用分离式霍普金森压杆装置(SHPB)、S-4800场发射扫描电镜等测试分析手段,探究复合材料制备保温时间和多孔碳化硅性能对多孔SiC陶瓷/Zr基非晶合金复合材料动态压缩性能的影响,并揭示了其变形机制。结果表明:保温时间和多孔碳化硅性能对多孔SiC陶瓷/Zr基非晶合金复合材料的动态抗压强度都有较大影响,当多孔碳化硅孔隙率为23.77%,平均孔径尺寸为26.72μm时,在复合材料制备浸渗温度为860℃,浸渗后保温6.0 min时,复合材料具有最高的动态抗压强度,为1757 MPa。多孔SiC陶瓷/Zr基非晶合金复合材料动态压缩断裂为脆性断裂,断口微观形貌特征包括SiC陶瓷相上形成具有不同特征的解理台阶,Zr基非晶合金相形成不同形态的脉状花样,非晶相保持相对完整。Zr基非晶合金相能有效阻碍裂纹的扩展,导致非晶相周围的碳化硅碎裂并挤压非晶相整体运动,从而提高了多孔SiC陶瓷/Zr基非晶合金复合材料动态抗压强度。  相似文献   

7.
孙志 《铸造技术》2014,(7):1480-1482
基于逆向浸渗工艺方法,制取了不同浸渗温度下的Wf/Zr基非晶合金复合材料。研究了此种合金复合材料晶体界面组织形态及其压缩性能和结合强度受浸渗温度的影响。结果表明,在浸渗温度1 100 K的环境下保温30 min制备出的Wf/Zr基非晶合金复合材料的最高压缩强度可达2 409 MPa,其塑性变形程度达到19.5%。  相似文献   

8.
使用TiZrNiCu非晶钎料成功实现了TiB_w/TC4复合材料和Ti60合金的钎焊连接。通过扫描电子显微镜、能谱仪、X射线衍射仪及万能材料试验机表征钎焊接头的组织及性能。在940°C保温10 min下,钎焊接头的典型界面组织为Ti Bw/TC4复合材料/β-Ti+Ti B晶须/(Ti,Zr)_2(Ni,Cu)金属间化合物层/β-Ti层/Ti60合金。钎焊过程中元素向母材中的扩散过程直接影响接头界面结构。钎焊温度的升高使(Ti,Zr)_2(Ni,Cu)金属间化合物层的厚度减小,当钎焊温度超过1020°C时,(Ti,Zr)_2(Ni,Cu)金属间化合物层消失。钎焊温度较低时,生成的脆性相(Ti,Zr)_2(Ni,Cu)不利于接头性能。接头剪切强度随钎焊温度的升高呈先增加后降低的趋势,在1020°C下获得最大的剪切强度368.6 MPa;而当钎焊温度达到1060°C时,接头强度降低,这是由于形成了粗大的层状(α+β)-Ti组织。  相似文献   

9.
Zr基非晶合金力学性能的研究进展   总被引:3,自引:2,他引:1  
Zr基非晶合金具有很强的非晶形成能力,可在小于103K/s临界冷却速率条件下获得.近年的研究表明,Zr基非晶合金具有高强度、超塑性、高弹性、高硬度、高耐磨性、高耐腐蚀性和优异的加工成形等性能,有着广阔的应用前景.本文总结了Zr基非晶合金的形成机理,着重对Zr基非品合金的力学性能、耐腐性能、加工性能等进行了综述.  相似文献   

10.
采用二次离子质谱(SIMS)以及透射电镜(TEM)研究在683~723 K温度范围内Ni原子在Zr48Cu36Ag8Al8非晶合金中的扩散行为。在过冷液相区内,Ni原子在Zr48Cu36Ag8Al8非晶合金中的扩散系数满足单一的Arrhenius关系式,具有较低的激活能,在过冷液相区内其扩展数系数是一个随退火时间变化的函数。此外,在界面附近有大量的纳米晶形成,其宽度大于通过二次离子质谱检测到的Ni原子扩散深度。结果表明:原子互扩散是促使界面纳米晶形成的重要因素。  相似文献   

11.
利用铜模铸造制备了一系列含Gd的Zr基块状非晶合金,用X射线衍射和差示扫描量热法研究了稀土元素Gd对Zr基块体非晶合金的形成能力、结构变化、热稳定性的影响。结果表明,Gd的加入增大了Zr基块体非晶合金的平均原子间距,改变了Zr基非晶合金的近程有序区和原子排列。Gd含量从1%增加到10%,ΔTx从50.1K减小到33.9K,即非晶合金的稳定性减弱,但是Gd含量为5%时,约化玻璃转变温度Trg出现了最大值0.7016,显示了非晶合金的形成能力有所提高。  相似文献   

12.
Zr基非晶合金与铜的扩散连接研究   总被引:1,自引:0,他引:1  
利用Gleeble 3500热模拟试验机在添加和未添加扩散连接中间层条件下对Zr41.25Ti13.75Cu12.5Ni10Be22.5块体非晶合金与纯铜的扩散连接性进行了研究。实验结果表明,在两种条件下均获得了无裂纹和空洞的良好的连接界面。通过扫描能谱分析和电子探针分析在连接界面处观察到明显的元素扩散,但元素扩散距离较窄。非晶合金中晶化相的出现促进了界面处元素的扩散。  相似文献   

13.
采用单辊真空甩带法制备一种新型Ni基非晶合金(Ni68.6W17.9B13.5,摩尔分数)。结果表明:B元素含量对Ni-W-B体系形成非晶合金具有较大影响,B含量较低时不利于形成非晶合金,而当B含量高达13.5%(摩尔分数)时可形成Ni-W-B非晶合金;Ni68.6W17.9B13.5非晶合金的玻璃转化温度和晶化温度分别高达768 K和781.5 K,采用Ozawa法计算其晶化激活能为(637±60)kJ/mol,表明其具有较高的热稳定性;Ni68.6W17.9B13.5非晶合金的抗拉强度约为2331 MPa,表明其具有在高强度领域应用的潜力。  相似文献   

14.
用座滴法研究了Zr55Al10Ni5Cu30合金熔体与不锈钢基片在连续升温和不同温度下保温20 min的润湿动力学,用扫描电镜观察了润湿冷凝样品的界面形貌,用能谱分析、X射线衍射等研究了界面反应,分析了Zr55-Al10Ni5Cu30与不锈钢基片之间的扩散和界面问题.结果表明:随着温度的升高,Zr55Al10Ni5Cu30与不锈钢基片之间的润湿角减小,润湿半径增大;1 223,1 273 K时等温润湿动力学分3个阶段:孕育阶段、准稳态减小阶段和趋于平衡阶段,温度高于1 323 K时润湿只有趋于平衡阶段;Zr55Al10Ni5Cu30合金与不锈钢之间的润湿为反应控制型润湿,界面处有明显的扩散层和界面反应层;合金熔体一侧含熔体与不锈钢反应生成的Cr2Zr,界面处含反应生成的Al5Cr;在制备Zr55Al10Ni5Cu30/不锈钢非晶复合材料时必须合理选择制备工艺,严格、控制界面反应.  相似文献   

15.
高熵合金是近几年发展起来的新型金属材料,高熵合金的扩散迟滞效应使其具有较好的热稳定性及高温抗氧化性,对其扩散行为的研究对理解高熵合金的相形成、组织和性能演化有重要意义。以AlCoCrFeNi系高熵合金为研究对象,将纯Al和Al_(6.97)Co_(23.26)Cr_(23.26)Fe_(23.26)Ni_(23.26)高熵合金制成扩散偶,研究不同温度下Al在AlCoCrFeNi高熵合金中的扩散行为。利用电子探针检测扩散层的形貌和成分分布,计算了扩散系数和扩散激活能。结果表明:当温度低于723K时,Al与Al_(6.97)Co_(23.26)Cr_(23.26)Fe_(23.26)Ni_(23.26)高熵合金间的元素扩散速率非常慢,在扩散偶的界面处未发现新相的形成;当温度在773~873 K时,在Al与高熵合金的界面处形成明显的扩散反应层,扩散反应层内有新相形成;Al在Al_(6.97)Co_(23.26)Cr_(23.26)Fe_(23.26)Ni_(23.26)高熵合金的扩散激活能为(50.9±6.8) k J/mol;扩散距离随温度的升高而增大。  相似文献   

16.
用逆向浸渗工艺制备了直径为0.5mm的钨丝增韧Zr41Ti14Cu12.5Ni10Be22.5块体非晶复合材料。研究了浸渗温度对复合材料界面状态以及压缩性能的影响。当浸渗温度分别为1000、1100和1200K时,复合材料的界面结合分别为机械结合、机械结合与冶金结合共存和反应结合形式。较低的浸渗温度会造成界面结合强度不足,过高的浸渗温度导致钨丝脱熔而形成界面反应产物,二者均对Zr41Ti14Cu12.5Ni10Be22.5块体非晶复合材料的压缩强度和变形行为产生不利影响。在1100K浸渗时、保温30min获得的W/Zr块体非晶复合材料具有2409MPa的最高压缩强度和19.5%的塑性变形能力。  相似文献   

17.
利用EET理论分析Zr元素对钛基钎料合金的固溶强化效果,得出锆含量自45%~12%变化时,Ti-Zr-15Cu-10Ni(质量分数,%)钎料合金晶胞内最大共价电子数先保持不变、而后减小再增大.当锆含量为37.5%时,Zr元素对钛基钎料合金的固溶强化作用相对较大,采用此锆含量的钎料合金Ti-37.5Zr-15Cu-10Ni(质量分数,%)对Ti3Al-Nb合金进行同质过渡液相扩散连接.在连接温度低于1000℃条件下,钎料合金的扩散能力主要受保温时间的影响;在较高连接温度下,钎料合金的扩散能力明显提高,可在短时保温条件下形成组织均匀、无析出物的连接界面.  相似文献   

18.
利用Gleeble 3500热模拟试验机在添加和未添加扩散连接中间层条件下对Zr_(41.25)Ti_(13.75)Cu_(12.5)Ni_(10)Be_(22.5)块体非晶合金与纯铜的扩散连接性进行了研究。实验结果表明,在2种条件下均获得了无裂纹和空洞的良好的连接界面。通过能谱分析和电子探针分析,在连接界面处观察到明显的原子扩散,但原子扩散距离较窄。非晶合金中晶化相的出现促进了界面处原子的扩散。  相似文献   

19.
通过磁控共溅射成功制备了稀土镱(Yb)掺杂Zr基非晶合金薄膜,采用SEM、EDS、XRD和接触角测试仪等手段研究了(Zr_(48)Cu_(44)Al_8)_(1-x) Yb_x(原子分数,%)合金的非晶形成能力及薄膜性能与稀土掺杂浓度的关系。结果表明:掺杂Yb原子分数为9.37%时合金体系具有最强的非晶形成能力。随着稀土Yb溅射功率的增加,XRD低角度出现的预峰逐渐消失,膜层由单相Zr基非晶演变成双相非晶,特别是当功率大于50 W时XRD中出现新的非晶衍射峰,该衍射峰强度随功率增加而增强,因此获得单相Zr基非晶薄膜层的最佳掺杂功率为10 W,此时膜层中稀土元素均匀分布。同时,非晶薄膜表面粗糙度随Yb靶溅射功率增加出现极值点,30W时薄膜对应的接触角为104.9°,呈现疏水性能。因此,稀土Yb掺杂对Zr基非晶形成能力和薄膜性能产生了显著影响。  相似文献   

20.
采用铜型铸造法制备直径为12mm的Ti35Zr30Be27.5-xCu7.5Cox(x=3.5,7.5,11.5)系列块体非晶合金。采用X射线分析(XRD)、差示扫描量热仪(DSC)研究了Co元素含量变化对Ti-Zr基合金的非晶形成能力、结构变化以及热稳定性的影响。结果表明,随着Co元素替代部分Be元素(x=3.5,7.5),合金的非晶形成能力由5mm显著提高到12mm,进一步增加Co元素含量(x=11.5)时,非晶形成能力迅速降低,其形成能力不足5mm;但随着Co含量的变化,Ti35Zr30Be27.5-x Cu7.5Cox(x=3.5,7.5,11.5)系列块体非晶合金的玻璃转变温度Tg、晶化温度Tx分别从x=0时的636K和718K降低到x=11.5时的612K和647K。讨论了Co元素的添加对Ti35Zr30Be27.5-xCu7.5Cox(x=3.5,7.5,11.5)合金结构变化的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号