首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Gleeble-3800热模拟试验机,研究了GCr15轴承钢在变形温度800~1200℃、应变速率0.01~10 s-1、真应变0.7条件下的热变形行为,建立了其基于峰值应力的本构方程,分析了不同应变量的热加工图,并建立了再结晶区域图。结果表明:变形温度越高,应变速率越小,流变应力越低,材料越容易发生动态再结晶;确定了其在真应变0.6及0.7时的安全区与失稳区,并得到了试验钢发生部分动态再结晶的热变形工艺参数。  相似文献   

2.
利用Gleeble-1500热模拟机进行热压缩实验,对T23钢在变形速率为0.01 ~5 s-1,变形温度为1000~1250 ℃的热变形行为和组织进行研究.根据实验获得的真应力-真应变曲线,基于动态材料模型建立了热加工图,并推导出流变应力方程.结果表明:T23钢在热压缩过程中存在动态回复和动态再结晶两种软化机制,变形温度越高或变形速率越小,越容易发生动态再结晶.真应变量为0.5和0.6的加工图具有4个类似的失稳区,功率耗散效率因子的分布规律大致相同,峰值区在1175 ~1240℃和0.03~0.25 s-1范围,对应的峰值效率分别为47.3%(0.5)和46.3%(0.6).流变应力方程中,结构因子A、应力水平参数α、应力指数n分别为5.23×1012 s-1、0.01155 MPa-1和4.46869,热变形激活能为368.65 kJ/mol.  相似文献   

3.
借助Gleeble-1500D热模拟试验机,在温度1050~1200 ℃,应变速率0.01~1 s-1,变形量在50%的条件下对LZ50高速铁路车轴钢试样进行热变形压缩试验。通过试验测得该材料不同工艺参数下的真应力-应变曲线,采用Arrhenius双曲正弦函数推导LZ50钢的高温塑性本构方程,并分析了不同热加工条件下LZ50钢的动态再结晶行为。结果表明,LZ50钢对温度和应变速率的变化较为敏感,温度越高,应变速率越低,所对应流动应力值越小。LZ50钢的变形激活能为217 920.626 J/mol。变形温度越高,应变速率越低,再结晶现象越容易发生。  相似文献   

4.
为研究新型T91稀土钢的热力学性能,采用Gleeble-1500D热模拟试验机测定变形温度θ为1100~1250℃、ε觶为0.5~5 s-1时的应力-应变曲线,并采用Zener-Hollomon参数法构建该钢不同条件下高温塑性变形的本构方程。结果表明:在高变形温度及低应变速率时,测定的T91稀土钢应力-应变曲线呈双峰特征,有动态再结晶现象产生。随变形温度升高及应变速率的降低,动态再结晶现象越易发生;应变速率越小,流变应力下降越明显。T91钢的热变形激活能为509.04k J·mol-1。  相似文献   

5.
为了研究DB685钢的热变形特性,选取并建立了DB685钢的高温应力应变本构方程,利用Gleeble-1500热模拟机对DB685钢在变形温度为900~1200℃、应变速率为0.01~10 s~(-1)、最大应变量70%条件下进行压缩实验,根据建立的本构方程,绘制DB685钢的热变形加工图,利用所建立的加工图,分析了不同温度和应变速率下合金的热成形性能,结果表明:随着变形温度的升高和应变速率的降低,合金的流变应力下降,动态再结晶更容易发生;DB685钢在1125℃温度以上,并且在对应的应变速率下,耗散系数存在峰值;随着应变的增大,其耗散系数略有增大,失稳区减小,但热加工图的整体趋势保持一定。因此对于工业热加工,建议变形温度为1125~1175℃,应变速率高于0.032 s~(-1)。  相似文献   

6.
利用Gleeble-3500型热模拟试验机对M50NiL钢进行了温度为900~1200℃、应变速率为0.01 ~ 50 s-1的热压缩试验,研究了M50NiL钢的热变形行为.结果 表明:在本实验条件下M50NiL钢出现了3种组织,即具有变形晶粒和孪晶的微观组织、新形核再结晶晶粒和锯齿状晶粒的微观组织和完全动态再结晶的微观组织.Z参数值越低,动态再结晶组织就越充分,Z参数值越高,越容易形成变形晶粒和孪晶的微观组织.基于位错密度理论和Avrami形核长大动力学建立了M50NiL钢的物理型本构方程,其能够揭示动态回复和再结晶两种物理机制对流动应力的影响规律.预测的流动应力与实验数据具有很好的相关性,表明该本构方程能够准确地描述M50NiL钢在较宽温度和应变速率范围下的动态回复和动态再结晶行为.  相似文献   

7.
采用Q345钢,在Gleeble-3800上进行等温热压实验,实验应变速率0. 01~10 s-1、变形温度850-1 100℃条件下。依据得出的热压缩真应力-应变曲线,基于Arrhenius双曲正弦方程,建立Q345钢的本构方程,并构建相应的动态材料模型(DMM)的热加工图。结果显示:热变形中,随着应变速率的增加,流变应力增加,然而,随温度的增加而流变减小。温度为975~1 100℃、应变速率为1~10 s-1,耗散值较大,表明易发生动态再结晶,具备良好的热加工性能。  相似文献   

8.
采用Gleeble3800热模拟试验机对16Cr超级马氏体不锈钢进行高温热压缩试验,测得其高温流变应力曲线。通过双曲正弦模型构建了试验钢的热变形本构方程,获得了该钢的热变形表观激活能Q为533.018 k J/mol。根据材料动态模型绘制试验钢热加工图,结合高温变形后显微组织,确定可行热加工工艺参数:变形温度为925~1025℃,应变速率为0.01~0.1 s~(-1);变形温度为1050~1100℃,应变速率为0.1~10 s~(-1)。此时试验钢组织发生了完全动态再结晶,晶粒明显细化,且对应的能量耗散效率较高。  相似文献   

9.
为了研究铸态P91耐热合金钢的高温变形流变特性,建立铸态P91耐热合金钢高温流变应力本构方程,采用Gleeble-3500热模拟实验机对铸态P91耐热合金钢进行等温热压缩实验,研究了变形温度为900~1200℃、应变速率为0.01~5 s-1、变形量为60%条件下的热变形行为。研究结果表明,随着变形温度的升高和应变速率的降低,动态再结晶现象越容易发生,流变应力显著降低,曲线由加工硬化型向动态回复及动态再结晶型转变。在双曲正弦修正的Arrhenius型方程及Zener-Hollomon参数的基础上,考虑真应变对流动应力的影响,建立了铸态P91耐热合金钢的流变应力模型及本构方程。误差分析表明,所建立的本构方程具有良好的精度。  相似文献   

10.
研究了镍基高温合金GH4700变形温度和应变速率对热变形行为的影响,建立了该合金的热变形本构方程和热加工图。结果表明:在变形温度1120~1210℃、应变速率0.01~20 s-1条件下,该合金的热变形流变曲线呈现出典型的动态再结晶型特征,存在稳态的流变应力,且随着变形温度的升高和应变速率降低,动态再结晶过程更充分;GH4700合金的热变形激活能为326.3165 kJ/mol;该合金在温度为1180~1210℃,应变速率为10~20 s-1的热压缩变形条件下,能量耗散率η值较高,大于0.30,显微组织发生完全动态再结晶,获得的组织晶粒细小且分布均匀。  相似文献   

11.
为了获得00Cr12Ni11Mo1Ti2高强度不锈钢热加工图,优化其热加工工艺参数,采用Gleeble-3800型热模拟试验机,在变形温度为850~1150℃,应变速率为0.01~10 s-1的条件下对试验钢进行了热压缩试验,研究了其热变形行为。构建了试验钢在峰值流变应力下的本构方程,并且基于动态材料模型构建了能量耗散图,并分别采用Prasad和Murthy两种失稳判据构建了试验钢的塑性失稳图。结果表明:00Cr12Ni11Mo1Ti2钢在能量耗散率低于0.3的变形区间内同样可以发生动态再结晶,在应变速率为1.0~10 s-1,变形温度为850~1000℃的区间内,试验钢仅发生了部分动态再结晶且伴有大量的局部变形带产生,与Murthy准则预测的塑性失稳区更加吻合;在变形温度为1050~1150℃,应变速率为0.01~10.0 s-1的区间内试验钢具有最佳的热加工性能,可获得细小均匀的原奥氏体晶粒组织。  相似文献   

12.
《铸造技术》2015,(7):1656-1658
研究了Nb-V-Ti低碳微合金钢的流变行为,并基于动态模型建立了该钢的加工图。结果表明,热变形流变应力对变形温度以及应变速率很敏感,温度越高、应变速率越低时流变应力越低,越容易发生动态再结晶。当温度在1008~1 150℃范围、应变速率在0.13~3.16区域时,可以获得等轴的完全动态再结晶组织。  相似文献   

13.
30CrNi3MoV钢的热变形行为及热加工图   总被引:1,自引:0,他引:1       下载免费PDF全文
储滔  沈慧  斯庭智 《金属热处理》2020,45(10):24-30
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。  相似文献   

14.
采用Gleeble-3500热模拟试验机对06Ni31Cr19Mo2Nb含铌奥氏体不锈钢进行高温单道次热压缩试验,研究了其在不同变形温度(950~1100℃)和应变速率(0. 01~1 s-1)条件下的热变形行为及组织变化规律,并且根据试验条件下真应力-真应变曲线,推导了该材料的热变形方程和热加工图。研究结果表明:流变峰值应力随温度升高或应变速率降低而降低;变形温度越高,应变速率越低,试验钢发生动态再结晶行为愈发显著。计算出该试验钢的热变形激活能为365. 111 k J·mol-1。基于动态材料模型绘制出不同应变量下的热加工图,其失稳区域和最优热加工区域的分布具有相似性。变形温度在990~1070℃,应变速率0. 0316~0. 1 s-1范围内,材料热加工性能最佳,能量耗散率为43%~45%。  相似文献   

15.
通过热模拟压缩试验分析了50SiMnVB合金钢在应变速率0.01~10 s-1、变形温度800~1000℃下的高温热变形行为。利用金相显微镜观察了钢压缩变形后的显微组织。结果表明:50SiMnVB合金钢热变形过程中出现了典型的动态再结晶(DRX)现象,应变速率对合金DRX影响较小,而温度影响较大,且应变速率越小、温度越高,越容易发生动态再结晶。根据试验结果,基于应力应变曲线,确定了钢DRX发生的临界应变,并建立了临界应变模型。  相似文献   

16.
采用Gleeble-3500热模拟试验机研究AA5083铝合金在应变速率0.0l~10 s~(-1)、变形温度300~500℃条件下的热压缩变形行为。结果表明:该合金在高应变速率和高变形温度下容易发生动态再结晶,并引起流变应力下降。为了预测不同变形条件下的流动特性,建立基于Arrhenius型方程和Zener-Hollomon参数的应变补偿本构方程,本构方程预测值与实验结果吻合较好,在实验范围内两者的平均相对误差仅为4.52%,说明提出的本构方程可对AA5083铝合金的热变形行为进行精确预测。  相似文献   

17.
《塑性工程学报》2020,(2):135-143
采用Gleeble-3500热模拟试验机对高铝高强钢在变形速率为0. 01~10 s-1、变形温度为925~1225℃的热变形条件下进行压缩试验,以真应力-应变曲线为基础数据研究其高温再结晶行为。通过对晶粒尺寸的统计来探究热变形条件对热变形后晶粒尺寸的影响。通过处理加工硬化率-应力曲线,标定数据中能揭示动态再结晶演变过程的3个特征点,即临界应变、峰值应变及最大软化速率应变。引入表征晶体动力学的双曲正弦模型,通过线性回归求解得到动态再结晶激活能Q,建立流变应力本构方程,并引入Z参数作为预测发生再结晶程度的依据。结果表明:高铝高强钢热加工过程是加工硬化和再结晶软化共同作用的。在发生再结晶条件范围内,Z值越小,发生动态再结晶的程度越大。  相似文献   

18.
为了研究退火态42CrMo钢的热变形行为,利用Gleeble3800热模拟试验机进行了单道次热压缩实验,获得了变形温度930~1230℃、应变速率0.001~1 s-1条件下的高温流变应力曲线。分别应用Arrhenius方程和Yada模型构建了42CrMo钢的高温本构模型和动态再结晶动力学模型,并基于动态材料模型应用不同变形条件下的峰值应力构建了其热加工图。结果表明,在大部分变形条件下,高温流变应力曲线呈典型动态再结晶特征,由于动态再结晶的作用,流变应力随变形温度的升高或应变速率的降低而减小。基于峰值应力构建的42CrMo钢高温本构模型和动态再结晶模型可以用于预测不同变形条件下的流变应力和微观组织演变。此外,根据42CrMo钢的热加工图,最佳热加工工艺参数范围为1100~1230℃、0.01~1 s-1。  相似文献   

19.
采用热模拟压缩试验机研究了适合薄带连铸生产的全新成分的耐大气腐蚀钢在变形温度900~1 200℃、应变速率0.1~30 s-1条件下的高温变形行为,得到了该钢的真应力-真应变曲线,分析了该钢在热变形过程中的动态再结晶行为,从材料本身角度回归得到了该钢高温热变形本构方程。结果表明:在薄带连铸工艺条件下生产耐大气腐蚀钢,在轧制温度1 050℃及以上时,压下量达到20%及以上,就会发生动态再结晶;而在轧制温度900℃时,压下量即使达到40%及以上,也不会发生动态再结晶。通过本构方程计算得到的峰值应力预测值与试验值相吻合,可以较好地描述适合薄带连铸工艺全新成分的耐大气腐蚀钢的高温热变形行为。  相似文献   

20.
采用Gleeble-1500D热模拟试验机,研究了Cu-0.8Cr-0.3Zr合金在变形温度为650~950℃、应变速率为0.001~10 s-1、总压缩应变量60%条件下的流变行为,对热变形过程中的组织演变和动态再结晶机制进行了分析,同时分析了该合金的热加工图。结果表明,变形温度越高,应变速率越小,合金越容易发生动态再结晶,且对应的峰值应力也越小。利用逐步回归的方法建立该合金的流变应力方程。绘制了Cu-Cr-Zr合金的热加工图,确定了其热加工时的安全区与失稳区,得出了该合金在实验参数范围内热变形过程的最佳工艺参数:温度范围为850~900℃,应变速率范围为0.1~1 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号