首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
对C-Si-Mn系TRIP钢采用等温退火工艺,得到具有TRIP效应贝氏体基高强钢。结果表明,TBF钢的组织主要由无碳化物贝氏体板条束、块状残余奥氏体、板条束间的薄膜状残余奥氏体及少量的回火马氏体组成。在连退过程中,贝氏体等温温度对TBF钢的组织和性能影响显著,当贝氏体等温温度为300℃时,TBF钢具有低屈服强度(789 MPa)、高抗拉强度(1241 MPa)以及良好的伸长率(16.6%)。等温300℃时,屈服强度的降低主要是因为80~190 nm的无碳化物贝氏体板条的生成。经过XRD测定,其残余奥氏体含量为12.04%,残奥含碳量经过测算为1.4%。稳定的块状残余奥氏体和无碳化物贝氏体板条有利于韧性的提高,相反,马氏体应该减少或避免。  相似文献   

2.
采用热膨胀仪和热模拟试验机在880~1050 ℃奥氏体化后进行300 ℃等温转变试验,研究了不同奥氏体化温度对中碳贝氏体钢等温相变动力学以及组织形貌、力学性能的影响。结果表明,奥氏体化温度升高导致晶粒尺寸增加,Ms点下降,贝氏体等温相变的孕育期延长;降低奥氏体化温度,可明显缩短贝氏体转变速率峰值出现的时间,说明较低的奥氏体化温度有利于加速贝氏体的转变。在本试验温度范围内,880 ℃奥氏体化处理试样的综合力学性能优异,抗拉强度为1671 MPa, 伸长率为13.3%。  相似文献   

3.
奥氏体化温度对10Ni3MnCuAl钢贝氏体转变动力学的影响   总被引:1,自引:1,他引:0  
利用热膨胀相变仪,研究了860~950℃不同奥氏体化温度对10Ni3MnCuAl钢贝氏体连续转变动力学的影响。结果表明,奥氏体化温度越高,奥氏体晶粒越粗大,贝氏体连续转变起始温度(Bs)和50%转变温度(Bm)越低,但贝氏体转变终了温度(Bf)几乎不变,并且奥氏体化温度越高,贝氏体转变速率峰向低温移动,贝氏体转变最大速率由相变驱动力和扩散速率共同决定,其中相变驱动力是主要影响因素。  相似文献   

4.
奥氏体预变形影响后续贝氏体相变,采用SEM、膨胀法和XRD衍射分析等实验方法,研究了奥氏体预变形对等温贝氏体相变动力学的影响规律。结果表明,300℃变形25%加速贝氏体相变,且贝氏体最终转量增多,室温组织中残留奥氏体量与贝氏体转变量相关,随贝氏体转变量增大而增多,变形对等温贝氏体相变的影响与变形温度和变形程度有关。此外,首次提出了变形条件下贝氏体相变动力学Avrami修正模型,为下一步系统建立变形条件下贝氏体相变动力学模型提供了参考。本文的结果为缩短高强塑积无碳化物贝氏体钢生产时间提供了有效途径。  相似文献   

5.
采用热模拟试验研究了两相区退火温度对TRIP590钢组织和性能的影响.结果表明:随着两相区退火温度的升高,铁素体体积分数先减少后增加,铁素体平均晶粒尺寸在整个实验温度范围内随着退火温度的升高一直减小;780~860℃范围退火时,残留奥氏体量和残留奥氏体富碳量都在820℃附近出现一个低谷,温度低于或高于820℃,残留奥氏体含量和残留奥氏体富碳量都增加,860℃退火时,残奥量和富碳量都最大;两相区退火温度的变化对抗拉强度基本影响不大,屈服强度随退火温度的变化略有增加,伸长率在820℃出现一个低谷,退火温度低于820℃时,伸长率随退火温度升高而降低,退火温度高于820℃时,伸长率随温度升高而升高,860℃退火时,伸长率达到最大值23%.  相似文献   

6.
通过全自动相变仪、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等,研究880~1100 ℃淬火温度对30 mm厚Q690D钢显微组织、原始奥氏体晶粒尺寸、-20 ℃低温冲击性能和冲击断口形貌的影响。结果表明,当淬火温度低于950 ℃时,试验钢奥氏体平均晶粒尺寸小于10 μm,随着淬火温度的升高,Nb、V、Ti微合金碳化物溶入奥氏体量增加,-20 ℃低温冲击吸收能量逐渐升高;当淬火温度由950 ℃升高至1100 ℃,随着奥氏体晶粒快速长大,试验钢-20 ℃冲击吸收能量由最大值150 J降低至19 J;Q690D钢的最佳淬火工艺为950 ℃×20 min,水冷。  相似文献   

7.
利用电解分离萃取、光学显微镜以及X射线衍射等方法分析了奥氏体化温度对M50钢碳化物溶解、晶粒尺寸以及残留奥氏体含量等组织转变的影响。结果表明,当奥氏体化温度为1000℃时,M_(23)C_6已经全部溶解,而M_6C也已于1100℃下完全溶解,继续升高奥氏体化温度,剩余碳化物类型不再发生变化;当奥氏体化温度为1120℃时,出现个别晶粒长大现象,而温度达1140℃时,平均晶粒直径达37μm,晶粒度已经达6.5级;随奥氏体化温度的升高残留奥氏体含量逐渐增加,当奥氏体化温度为1200℃时,残留奥氏体含量达30%。  相似文献   

8.
采用DIL 805A/D/T多功能淬火膨胀仪,结合显微组织表征和硬度测试,研究了25Cr2Ni4MoV钢在短时奥氏体化条件下的连续冷却转变(CCT)动力学和组织演变规律。结果表明:在850℃短时奥氏体化条件下,连续冷却相变发生在450~150℃区间;当冷速大于2℃/s时得到的室温组织为马氏体,随着冷速降低,试样中出现贝氏体;当冷速小于0.5℃/s时其显微组织主要为贝氏体组织;随着冷速的进一步降低,当冷速为0.02℃/s时,除了贝氏体以外还有少量的马氏体/奥氏体岛和残留奥氏体。冷速从2℃/s降低至0.5℃/s时硬度变化较明显,这与组织中形成的马氏体与贝氏体的比例有关。由于短时奥氏体化条件下存在未溶解的碳化物,基体碳浓度较低,其Ms温度较高;贝氏体转变速率也较快,这可能与奥氏体的晶粒尺寸小和存在未溶碳化物有关。  相似文献   

9.
根据(GB/T 1220-1992)不锈钢标准成分范围,对兼具高强度、高韧性和高耐腐蚀性钢的组织,结合基础理论分析与软件模拟,进行成分设计,预设组织为含Cu无碳化物贝氏体组织.利用DIL-87型淬火膨胀仪对所设计试验钢在不同奥氏体化温度、保温时间和冷却速度等条件下进行膨胀试验,测定其相变动力学参数,结合光学显微镜分析其相变行为并绘制相应的相变动力学曲线.结果 表明:在连续冷却转变过程中,冷却速度为0.1~5℃/s时,试验钢的组织为贝氏体与马氏体,冷却速度小于0.1℃/s时,为珠光体、贝氏体和马氏体;等温转变过程中,当等温温度在Bs(375℃)~Bf(225℃)之间时,转变产物以贝氏体为主,在Ms(307℃)以上为贝氏体,在Ms(307℃)以下为贝氏体和马氏体.从贝氏体转变过程中来看,预设试验钢的贝氏体转变区间宽泛且Bs点较低.  相似文献   

10.
采用光学显微镜观察超细化H13钢在不同奥氏体化温度等温球化退火后的显微组织,并对退火后H13钢的残留碳化物形态及分布进行研究。利用Image Pro-Plus软件对退火后碳化物的分布情况进行定量分析,并利用扫描电镜观察不同退火温度下冲击试样的断口形貌,研究不同退火温度对超细化H13钢组织与性能的影响。结果表明,随奥氏体化温度的升高,超细化H13钢硬度下降,碳化物数量与尺寸减小。当高于880℃进行等温球化退火时,晶粒明显变大,材料的退火态韧性急剧下降,回火后残留奥氏体含量增加,残留奥氏体的存在降低了H13钢的硬度。超细化H13钢在860℃进行等温球化退火,材料的综合力学性能最佳。  相似文献   

11.
为实现高品质Ti微合金化高强钢的工业化生产,通过热模拟试验研究了加热温度、终轧温度、精轧阶段变形量、冷却速率和卷取温度对Ti微合金化高强钢组织性能的影响规律。结果表明,随着加热温度的升高,铁素体晶粒尺寸显著增大,试验钢硬度增大。随着终轧温度的降低和冷却速率的增大,铁素体晶粒尺寸逐渐减小,贝氏体含量增加,试验钢硬度增大。随着精轧阶段变形量的增大,铁素体含量增加,组织得到细化,细晶强化和相变强化共同作用的结果使得试验钢硬度逐渐降低。随着卷取温度的降低,试验钢的硬度先升高后降低,当卷取温度为610 ℃时,试验钢硬度最高。  相似文献   

12.
对不同Mn含量(0、1.8、2.3和3.2wt%)的无碳化物贝氏体钢进行(Ms+10)℃等温转变和(Ms+10)~(Ms-20)℃连续冷却转变热处理,利用金相、XRD、TEM和EBSD等技术研究了Mn含量对钢组织性能的影响。结果表明:无Mn钢在Ms温度附近转变所得组织为贝氏体铁素体、残留奥氏体和仿晶界型铁素体混合组织,含Mn钢在Ms温度附近转变所得组织为下贝氏体,由板条状的贝氏体铁素体和片状的残留奥氏体组成,随Mn含量的提高,组织中残留奥氏体体积分数变化较小,贝氏体组织强度提高,塑性降低。Mn含量为2.3%时,综合性能最佳。  相似文献   

13.
试验钢采用低碳Nb、Ti、Ni、Cu、Mo等合金化设计理念进行X100管线钢化学成分设计,用真空感应电炉冶炼,并经试验轧机TMCP工艺控制轧制,轧后弛豫并在机后快速冷却线中进行快速冷却。冷却后采用显微分析方法和力学性能测试等手段研究终冷温度对试验钢微观组织和性能的影响。结果表明:随着终冷温度的降低试验钢显微组织的变化规律是由多边形铁素体向准多边形铁素体、粒状贝氏体、贝氏体铁素体、马氏体型转变。在418 ℃时出现板条状贝氏体组织且随着终冷温度降低,组织中板条状贝氏体的含量增加,贝氏体板条束的直径变小板条间距变窄,提高了试验钢的强度和韧性指标。301 ℃时出现马氏体组织,试验钢的强韧性有所降低。未发现终冷温度对原始奥氏体晶粒尺寸有影响,因为影响试验钢原始奥氏体晶粒度的主要因数为控轧工艺。  相似文献   

14.
采用力学性能测试、透射电镜(TEM)、X射线衍射(XRD)仪和电子背散射衍射(EBSD)等分析方法,研究了淬火温度对GE1014超高强度钢组织及性能的影响。结果表明,试验钢的抗拉强度随淬火温度的升高先逐渐升高,随后降低,并且在925 ℃达到峰值2112 MPa,规定塑性延伸强度则呈现随淬火温度的升高小幅降低的趋势,试验钢的断面收缩率和U型冲击性能均随淬火温度的升高缓慢升高,在950 ℃附近出现降低趋势;试验钢的原始奥氏体晶粒和马氏体块的尺寸都随着淬火温度的升高而长大,当淬火温度超过925 ℃时,原始奥氏体晶粒尺寸快速粗化,而马氏体块尺寸则全程长大缓慢;850~925 ℃范围内,基体中的残留奥氏体含量随着淬火温度的升高而显著降低;淬火温度低于900 ℃时,试验钢中存在球状富Mo型M6C碳化物,淬火温度升高至900 ℃未观察到未溶相。  相似文献   

15.
研究了轧制加热温度对高强度低合金钢相变组织及-40 ℃冲击性能的影响。结果表明,不同轧制加热温度条件下,试验钢显微组织由粒状贝氏体组成,M/A岛尺寸随着轧制加热温度的升高而增大。轧制加热温度在1000~1150 ℃时,冲击性能良好,显微组织中M/A岛细小弥散,大角度晶界密度较大。轧制加热温度高于1150 ℃时,原始奥氏体晶粒尺寸明显粗化,相变后产生的M/A岛明显粗化,大角度晶界密度降低;随着轧制加热温度的升高,M/A岛的粗化以及大角度晶界密度的降低,共同导致冲击性能的下降。  相似文献   

16.
研究了3种碳含量(0.22C、0.34C、0.45C)的贝氏体钢在960℃奥氏体化+Ms点以上10~50℃等温淬火工艺下碳含量对贝氏体组织转变和力学性能的影响。结果表明,3种试验钢经过等温淬火处理后均获得由贝氏体铁素体和残留奥氏体相间分布组成的无碳化物贝氏体组织;随着碳含量的降低,贝氏体相变时间显著缩短,贝氏体铁素体板条变厚,硬度和抗拉强度呈下降趋势,但冲击性能显著提高,这主要是与低碳钢贝氏体转变温度更高,贝氏体铁素体板条粗大但高碳含量的大块状残留奥氏体减少有关。  相似文献   

17.
用光学显微镜、扫描电子显微镜及X射线衍射仪对20Mn2SiVB钢在贝氏体区不同温度等温不同时间所获得的组织和形态进行了研究。试验表明,20Mn2SiVB钢在贝氏体等温转变时,首先在奥氏体晶界析出贝氏体铁素体,随着等温时间的延长,铁素体板条增多,分割奥氏体晶粒,形成贝氏体铁素体和其板条间的富碳奥氏体岛;在920 ℃奥氏体化,420 ℃贝氏体区等温不同时间后空冷所获得组织为:无碳化物贝氏体、粒状贝氏体、残留奥氏体和马氏体,各相的体积分数随着保温时间的不同有所变化。在920 ℃奥氏体化420 ℃等温5 min后,试样可获得较好的综合性能,具有一定的TRIP效应,其Rm≈ 1090 MPa;A。≈ 15.4%  相似文献   

18.
研究了20Mn2SiVB钢经920℃完全奥氏体化后,在不同温度等温时的显微组织及力学性能。结果表明,20Mn2SiVB钢在不同温度转变时可以得到数量不等的无碳化物贝氏体、粒状贝氏体、铁素体、残余奥氏体和马氏体组织;经550℃等温处理的力学性能最佳。  相似文献   

19.
采用光学显微镜、Image-proplus 6.0软件图像分析、硬度测试、冲击试验和弯曲试验等研究了不同基体强韧化热处理工艺对Cr12Mo1V1冷作模具钢微观组织和力学性能的影响。结果表明:循环相变多次奥氏体化工艺通过细化晶粒尺寸和碳化物,能够有效提升Cr12Mo1V1钢的强韧性,循环次数和奥氏体化温度对其力学性能影响显著。奥氏体化循环2次比循环3次能够获得更大的性能提升。循环相变奥氏体化能够细化碳化物颗粒,改善碳化物形态,随着循环相变奥氏体化道次以及温度的增加,碳化物的细化效果更显著。循环相变奥氏体化能够细化奥氏体晶粒尺寸,但奥氏体化温度不宜过高,过高的奥氏体化温度导致晶粒长大,首道次奥氏体化温度为1050℃效果最佳。  相似文献   

20.
TiNbV微合金钢焊接接头HAZ晶粒长大及相变原位观察   总被引:1,自引:1,他引:0       下载免费PDF全文
采用激光共聚焦显微镜原位观察方法,研究了大热输入用TiNbV微合金钢在模拟焊接热循环作用下焊接热影响区(HAZ)晶粒长大过程及相变的规律. 热循环过程中加热温度升高至860 ~ 980 ℃时,发生由铁素体和珠光体向奥氏体的转变,1 100 ℃时,奥氏体晶粒开始有明显长大的趋势,1 300 ~ 1 400 ℃时,晶粒以合并长大方式迅速长大;冷却过程中温度降低至1 400 ~ 1 350 ℃时,晶粒以晶界迁移方式缓慢长大,660 ~ 580 ℃时,发生奥氏体迅速向贝氏体转变,焊接HAZ主要由贝氏体与铁素体组成,贝氏体的尺寸是由奥氏体晶粒大小决定的. 热循环高温停留时间延长,奥氏体与贝氏体的形成、终了、转变温度区间均有下降. 结果表明,组织中先共析铁素体含量先降低后增加,贝氏体含量降低,多边形铁素体消失,先共析铁素体含量增加,冷却组织趋于均匀粗大. 焊接过程中,选择合适的高温停留时间可提高组织中IAF的含量,提高力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号