首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 824 毫秒
1.
使用不同的浇注温度、压射比压和型腔温度进行了机械壳体用Mg-Al-Zn-Ti合金试样的压铸试验,并进行了磨损试验与分析。结果表明:当浇注温度从660℃增大到740℃,压射比压从35MPa增大到75MPa时,合金的耐磨性均先提高后下降;当型腔温度从150℃增大到250℃时,合金耐磨性先提高后基本不变。与660℃浇注相比,浇注温度700℃时合金的磨损体积(30.5×10~(-3)mm~3)减小33.7%;与压射比压35MPa相比,压射比压65MPa时合金的磨损体积(30.5×10~(-3)mm~3)减小31.2%;与型腔温度150℃相比,型腔温度200℃时合金的磨损体积(30.5×10~(-3)mm~3)减小35.4%。合金的浇注温度、压射比压和型腔温度分别优选为700℃、65MPa、200℃。  相似文献   

2.
在不同的浇注温度和压射比压下进行了ADC12-0.15V0.03In铝合金箱盖试样的压铸成形,并进行了耐磨损性能和耐腐蚀性能的测试、对比和分析。结果表明:随浇注温度的升高和压射比压的增大,箱盖试样的磨损体积和质量损失率均先迅速减小再缓慢增大,耐磨损性能和耐腐蚀性能先迅速提升后略有下降。在685℃浇注温度和95 MPa压射比压下,压铸试样的磨损体积和质量损失率最小,耐磨损性能和耐腐蚀性能最好。箱盖试样的压铸工艺参数优选为:685℃浇注温度和95 MPa压射比压。  相似文献   

3.
采用不同浇注温度和压射比压进行了AZ80-0.5Ce镁合金机械外壳压铸,并进行了力学性能和显微组织的测试与分析。结果表明:当浇注温度从650℃提高到730℃、压射比压从40 MPa增大到70 MPa时,外壳力学性能先提高后下降。(与650℃浇注相比,690℃浇注时外壳的平均晶粒尺寸由14.9μm减小到10.0μm,减小了32.4%;抗拉强度和屈服强度分别由251、216 MPa增大到288、252 MPa,分别增大14.7%、16.7%。与压射比压40 MPa相比,压射比压为60 MPa时的外壳平均晶粒尺寸由13.8μm减小到10.0μm,减小27.5%;抗拉强度和屈服强度分别由253、218 MPa增大到288、252MPa,分别增大13.8%、15.6%)。AZ80-0.5Ce镁合金机械外壳压铸的浇注温度优选为690℃,压射比压优选为60 MPa。  相似文献   

4.
采用不同的浇注温度、压射速度和压射比压对汽车外壳零件用新型镁合金Mg-9Al-0.8Zn-0.5V-0.3In试样进行了铸造试验,并进行了耐腐蚀性能的测试与分析。结果表明:随浇注温度、压射速度和压射比压的增加,试样的腐蚀电位先正移后负移,耐腐蚀性能先提升再下降。与660℃浇注温度相比,700℃浇注温度下试样的腐蚀电位正移了34m V;与50 m/min压射速度相比,200 m/min下试样的腐蚀电位正移了28 m V;与80 MPa压射比压相比,120 MPa压射比压下试样的腐蚀电位正移了42 m V。汽车外壳用镁合金的压铸工艺参数优选为:700℃浇注温度、200 m/min压射速度、120 MPa压射比压。  相似文献   

5.
采用不同的浇注温度和比压对AZ31镁合金汽车轮毂进行了液态模锻成形,并进行了显微组织、耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随比压和浇注温度的增加,轮毂试样的平均晶粒尺寸和磨损体积均先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与30 MPa比压相比较,50 MPa比压时试样的平均晶粒尺寸和磨损体积分别减小了27.39%、41.67%,腐蚀电位正移了36 m V。与680℃浇注温度相比,700℃浇注时试样的平均晶粒尺寸和磨损体积分别减小了33.33%、47.5%,腐蚀电位正移了47 m V。AZ31镁合金汽车轮毂的液态模锻工艺参数优选为:50 MPa比压、700℃浇注温度。  相似文献   

6.
采用不同的浇注温度、压射速度和压射比压对汽车用新型高强Mg-8Gd-4Y-0.3Zr-0.3Ti镁合金试样进行了制备并对力学性能进行了测试和分析。结果表明:与650℃浇注温度相比,710℃浇注温度下的抗拉强度和屈服强度分别增大了31、27 MPa;与100 m/min压射速度相比,200 m/min压射速度下的抗拉强度和屈服强度分别增大了22、16MPa;与50 MPa压射比压相比,90 MPa压射比压下的抗拉强度和屈服强度分别增大了26、24 MPa;伸长率变化幅度较小。Mg-8Gd-4Y-0.3Zr-0.3Ti镁合金的压铸工艺参数优选为:710℃浇注温度、200 m/min压射速度、90 MPa压射比压。  相似文献   

7.
采用不同的比压和浇注温度进行了汽车轴承架用Zn-Al合金的液态模锻,并进行了耐磨损性能和显微组织的测试与分析。结果表明:随比压从25MPa增大至65 MPa,浇注温度从550℃升高至630℃,汽车轴承架用Zn-Al合金试样的组织改善程度先增大后减小,耐磨损性能先提高后下降。与25 MPa相比,比压45 MPa使试样的磨损体积和平均晶粒尺寸分别减小了41%和33%;与550℃相比,浇注温度610℃使试样的的磨损体积和平均晶粒尺寸分别减小了49%和40%。汽车轴承架用Zn-Al合金的液态模锻工艺参数比压和浇注温度分别优选为45 MPa和610℃。  相似文献   

8.
采用不同的浇注温度和压射比压进行了汽车用新型AZ91-SrCe镁合金的压铸试验,并进行了显微组织和高温耐磨性的测试与分析。结果表明,在浇注温度670~710℃、压射比压30~70 MPa,随浇注温度和压射比压的提高,合金的平均晶粒尺寸和高温磨损体积先下降后提高,高温耐磨性先增加后减小。在浇注温度690℃和压射比压60MPa时,合金的平均晶粒尺寸最小(25μm),高温磨损体积最小(51×10~(-3)mm~3)。AZ91-SrCe镁合金压铸时,浇注温度和压射比压分别优选为690℃和60 MPa。  相似文献   

9.
采用不同浇注温度和冲头压射速度进行了建筑用6061-0.8V铝合金的铸锻复合成形,并进行了冲击性能和磨损性能的测试与分析。结果表明,当浇注温度在710~760℃增大或冲头压射速度在40~120 mm/s减小时,合金的冲击性能和磨损性能均先提高后下降。合金的浇注温度和冲头压射速度分别优选为740℃、80 mm/s。当浇注温度740℃时,合金的冲击吸收功较710℃浇注时增大64.5%,磨损体积则减小44.1%。当冲头压射速80 mm/s时,合金的冲击吸收功较冲头压射速度120 mm/s时增大37.84%、磨损体积则减小32.1%。  相似文献   

10.
为解决镁合金超薄外壳件压铸成形性差的难题,通过正交试验研究了浇注温度、模具温度和压射速度对铸件力学性能的影响。结果表明,当浇注温度为700℃、模具温度为210℃、压射速度为5m/s时,铸件的力学性能最佳。采用SEM对拉伸试样断口进行分析,发现铸件内部疏松、缩孔的数目随浇注温度升高而减少,在浇注温度为700℃时,抗拉强度和屈服强度分别达到242.6 MPa和220.6 MPa。  相似文献   

11.
采用不同的工艺参数进行了AZ91-0.5In镁合金电机盖试样的压铸试验,并进行了室温力学性能测试与分析。结果表明,随压射比压增大或压射速度增快,试样的抗拉强度和屈服强度均先增大后减小,而断后伸长率在7%~9%范围内先减小后增大。当压射比压90 MPa、压射速度5 m/s时,试样的抗拉强度和屈服强度达到峰值,分别为262、171 MPa。AZ91-0.5In镁合金压铸电机盖的压射比压优选90 MPa、压射速度优选5 m/s。  相似文献   

12.
基于液态压铸技术,研究了压射速度和浇注温度对亚共晶Al-10%Si(质量分数)合金组织与硬度的影响规律.结果表明:随着压射速度的增加,试样的硬度总的趋势是减小的,而试样的晶粒尺寸先减小而后增大:浇注温度对试样的晶粒尺寸和硬度值有明显影响,较高的浇注温度有利于获得晶粒尺寸细小,硬度值高的试样:当压铸工艺参数(增压压力16MPa、模具温度150℃、压射速度2.5m/s、浇注温度720℃)适宜时,Al-10%Si合金试样的硬度可达到57.9HBS,晶粒尺寸只有13.54μm.  相似文献   

13.
基于液态压铸技术,研究了压射速度对Al-10%Si合金组织与性能的影响,同时利用扫描电子显微镜(SEM)对其拉伸断口形貌进行分析.实验结果表明:随着压射速度的增大,试样的抗拉强度、伸长率和硬度先增加而后减小,而晶粒尺寸先减小而后增大;随着压射速度的增大,合金的断裂方式仍然属韧窝型韧性断裂.在本实验条件下,压射比压16MPa、模具温度150℃、浇注温度720℃、压射速度2.5m/s时,压铸Al-10%Si合金的力学性能较优,其力学性能可以达到σb=233MPa,δ5=8.57%,HBS=57.9.  相似文献   

14.
采用不同的液态模锻工艺参数对汽车铝轮辋进行了成形,并进行了磨损和腐蚀性能的测试与分析。结果表明:比压为120 MPa时,与660℃浇注相比,720℃浇注试样的磨损体积减小了32%,腐蚀电位正移了116 m V。浇注温度为720℃时,与100 MPa成形的试样相比,120 MPa成形时试样的磨损体积减小了21%,腐蚀电位正移了92 m V。随浇注温度从660℃升高至740℃、比压从100 MPa升高至130 MPa,汽车铝轮辋的耐磨损性能和耐腐蚀性能均先提高后下降。适宜的浇注温度和比压分别为720℃和120 MPa。  相似文献   

15.
阎峰云  张玉海 《热加工工艺》2007,36(21):35-37,40
在适宜的压射速度和压射比压下,研壳了浇注温度和铸型温度对压铸镁合金AM60B组织与性能的影响。实验结果表明:在其他工艺参数一定时,浇注温度、铸型温度变化对压铸镁合金AM60B组织与性能有较大的影响;当压射速度为3.0m/s,压射比压为70MPa,浇注温度为685℃,铸型温度为200℃时.压铸镁合金AM60B可以获得力学性能较好的铸件。  相似文献   

16.
采用液态压铸技术,研究了压铸工艺参数对AM60B合金显微组织的影响.试验结果表明,当浇注温度为680℃、模具温度为180℃、压射速度为3.0 m/s、压射比压为75 MPa时,压铸镁合金AM60B可以获得组织均匀细小、表面光滑、缺陷极少的铸件.  相似文献   

17.
对Mg-8Al-0.6Zn-0.3Ce新型镁合金汽车件进行了压铸成型,并进行了冲击性能和磨损性能的测试、比较和分析。结果表明:随压射速度和压射比压的增加,压铸件的冲击性能和磨损性能均先提高后下降。与120 mm/min压射速度相比,180 mm/min压射速度下的冲击吸收功增大了25.81%,磨损体积减小了25%;与40 MPa压射比压相比,80MPa压射比压下的冲击吸收功增大了32.2%,磨损体积减小了30%。Mg-8Al-0.6Zn-0.3Ce镁合金压铸件的工艺参数优选为:180 mm/min压射速度、80 MPa压射比压。  相似文献   

18.
采用不同的浇注温度和比压对ZA12-0.6Sr锌合金机械圆环试件进行了液态模锻试验,并进行了热疲劳性能和耐磨损性能的测试与分析。结果表明:随浇注温度和比压的增加,试样的主裂纹平均深度和磨损体积均先减小后增大,热疲劳性能和耐磨损性能均先提升后下降。与560℃浇注温度相比,600℃浇注温度下试样的主裂纹平均深度和磨损体积分别减小了38.1%、25%;与80 MPa比压相比,120 MPa下试样的主裂纹平均深度和磨损体积分别减小了31.58%、22.58%。ZA12-0.6Sr锌合金圆环的液态模锻工艺参数优选为:浇注温度600℃和比压120 MPa。  相似文献   

19.
采用不同的离心铸造工艺参数对Ti Al基合金汽车气阀进行了铸造,并在500℃进行了力学性能和耐磨损性能的测试与分析。结果表明:与1600℃浇注的试样相比, 1645℃浇注的试样抗拉强度和屈服强度分别增大了16%和21%,磨损体积减小了40%;与200℃模具预热温度相比,模具预热温度为240℃时试样的抗拉强度和屈服强度分别增大了15%和21%,磨损体积减小了26%;与旋转速度1000 r/min相比,当旋转速度为2500 r/min时离心铸造试样的抗拉强度和屈服强度分别增大了14%和22%,磨损体积减小了37%。随浇注温度从1600℃上升至1660℃,或模具预热温度从200℃上升至260℃,或旋转速度从1000 r/min增加至3000 r/min,力学性能和耐磨损性能均先提高后下降。Ti Al基合金汽车气阀的浇注温度、模具预热温度和旋转速度分别优选为1645℃、240℃和2500 r/min。  相似文献   

20.
固定浇注温度和铸型温度,研究压射速度和压射比压对压铸AM60B合金组织与性能的影响。实验结果表明:在其它工艺参数一定,压射速度和压射比压变化对压铸AM60B合金组织与性能的有较大的影响。当铸型温度为180℃,浇注温度为680℃;压射速度为3.0m/s-3,5m/s,压射比压为70MPa,AM60B合金可以获得力学性能较好的铸件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号