首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This paper investigates the leader-following scaled consensus problem of second-order multi-agent systems under directed topologies. Three novel leader-following scaled consensus protocols are designed. First, a novel scaled consensus protocol is proposed. It can guarantee the velocity of each agent in one sub-group exactly follow that of a leader, and the follower agents achieve scaled consensus. Second, another proposed protocol enables the agents' positions and velocities of one sub-group accurately track those of a leader, and the follower agents achieve scaled consensus. Third, consider the case where the leader's states available to one or multiple followers and the leader travels with a varying velocity, a novel scaled consensus tracking protocol is proposed. Sufficient and necessary conditions are obtained to guarantee scaled consensus tracking for the three cases,respectively. Finally, simulation examples are made to verify the effectiveness of the theoretical results.  相似文献   

2.
This work considers the problem of distributed consensus tracking control of second-order uncertain nonlinear systems under a directed communication graph which contains a spanning tree, where the leader node is the root. It is assumed that the followers receive only the relative positions from the neighbours. For the purpose of consensus tracking controller design, in each follower, a group of K-filters is introduced so that the necessity of velocity estimating is avoided. Then we can express each follower's tracking error dynamics as a second-order system with mismatched uncertainties. And hence we can design a robust consensus tracking controller for each follower by using the combination of the backstepping design and the disturbance observer based control using only relative position information. Theoretical analysis is performed to show that the DOBs' estimation errors can be made to decay to be sufficiently small very quickly before the system states escape from the feasible region. Then we show that all the followers' states track those of the leader with arbitrarily small ultimate error bounds. And simulation examples are provided to demonstrate the performance of the proposed method.  相似文献   

3.
This paper studies the problem of semi‐global leader‐following output consensus of a multi‐agent system. The output of each follower agent in the system, described by a same general linear system subject to external disturbances and actuator saturation, is to track the output of the leader, described by a linear system, which also generates disturbances as the exosystem does in the classical output regulation problem. Conditions on the agent dynamics are identified, under which a low‐gain feedback‐based linear state‐control algorithm is constructed for each follower agent such that the output consensus is achieved when the communication topology among the agents is a digraph containing no loop, and the leader is reachable from any follower agent. We also extend the results to the non‐identical disturbance case. In this case, conditions based on both the agent dynamics and the communication topology are identified, under which a low‐gain feedback‐based linear state‐control algorithm is constructed for each follower agent such that the leader‐following output consensus is achieved when the communication topology among the follower agents is a strongly connected and detailed balanced digraph, and the leader is a neighbor of at least one follower. In addition, under some further conditions on the agent dynamics, the control algorithm is adapted so as to achieve semi‐global leader‐following output consensus for a jointly connected undirected graph and the leader reachable from at least one follower. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, an efficient framework is proposed to the consensus and formation control of distributed multi‐agent systems with second‐order dynamics and unknown time‐varying parameters, by means of an adaptive iterative learning control approach. Under the assumption that the acceleration of the leader is unknown to any follower agents, a new adaptive auxiliary control and the distributed adaptive iterative learning protocols are designed. Then, all follower agents track the leader uniformly on [0,T] for consensus problem and keep the desired distance from the leader and achieve velocity consensus uniformly on [0,T] for the formation problem, respectively. The distributed multi‐agent coordinations performance is analyzed based on the Lyapunov stability theory. Finally, simulation examples are given to illustrate the effectiveness of the proposed protocols in this paper.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper studies the global leader‐following consensus problem for a multiagent system using event‐triggered linear feedback control laws. The leader agent is described by a neutrally stable linear system and the follower agents are also described by a neutrally stable linear system but with saturating input. Both the state‐feedback case and the output‐feedback case are considered. In each case, an event‐triggered control law is constructed for each follower agent and an event‐triggering strategy is designed for updating these control laws. These event‐triggered control laws are shown to achieve global leader‐following consensus when the communication topology among the follower agents is strongly connected and detailed balanced and the leader is a neighbor of at least one follower agent. The Zeno behavior is excluded. The theoretical results are illustrated by simulation.  相似文献   

6.
This paper investigates the distributed consensus tracking problem for multi-agent systems with Lipschitz-type dynamics under a reference leader. It is assumed that the leader state information is only available to a subset of followers, while the bounded reference input of the leader’s is unavailable to any follower. To achieve consensus tracking, a class of discontinuous protocols based on the relative information between the neighbouring agents are proposed. Furthermore, as extensions of the former result, the robust and adaptive consensus tracking problems are studied for the case where there exist parameter uncertainties and external disturbances in the network. Finally, the effectiveness of the theoretical result is demonstrated through a network of single-link manipulators.  相似文献   

7.
针对带有动态领导者的多智能体系统,为了使其达到跟踪一致性,设计只依赖于相对位置信息的自适应跟踪控制律.根据接收到的相对位置信息为每个跟随者设计动态输出反馈控制律,并根据控制律估计出智能体之间的相对速度信息.在此基础上设计自适应跟踪控制律,并且通过Lyapunov 稳定性理论和矩阵理论分析得到使系统达到跟踪一致性的充分条件.最后通过数值仿真验证了所提出的设计方法的有效性.  相似文献   

8.

In this paper, we address the fixed-time consensus tracking problem of second-order leader-follower multi-agent systems with nonlinear dynamics under directed topology. The consensus tracking algorithm consists of distributed observer and observer-based decentralized controller. The fixed-time distributed observer guarantees that each follower estimates the leader’s state under directed topology within a fixed time, where the upper bound of convergence time is independent on the initial conditions. The fixed-time decentralized controller makes each follower converge to the leader’s state in fixed time via tracking the distributed observer’s state and overcome the nonlinear dynamics without adding linear control terms. Finally, the numerical example is provided to illustrate the effectiveness of the results.

  相似文献   

9.
This paper presents a systematic approach for decreasing the error growth of a formation system consisted of a leader and a number of followers which are open-loop in position measurements (position, linear velocity and relative distance to the leader). Using conventional algorithms to control such a system may lead to an unstable network with increasing consensus error. A 3-phase algorithm is proposed to address open-loop systems of the mentioned form. The algorithm is specifically beneficial to the case where linear velocity and position sensors get damaged. The main idea of the proposed algorithm is to use fundamental relations between feedbacks and construct some of them using the others which in case of car-like ground vehicles, angular sensors’ feedbacks are used to estimate linear feedbacks. The error and input mathematical relations are formulated using kinematic of car-like robots. The stability of the proposed method is proved using a quadratic CLF, and the numerical simulation results are presented to assess the effectiveness of the algorithm compared to a conventional open-loop form. The algorithm is also applied on a pair of ground car-like robots. The experimental results verify the conclusions based on simulation. Various simulation results show that the proposed algorithm has improved the divergence rate of follower’s path from leader’s, from 0.3 msec for the unit of velocity’s uncertainty to about zero.  相似文献   

10.
This paper investigates the fnite-time consensus problem of multi-agent systems with single and double integrator dynamics,respectively.Some novel nonlinear protocols are constructed for frst-order and second-order leader-follower multi-agent systems,respectively.Based on the fnite-time control technique,the graph theory and Lyapunov direct method,some theoretical results are proposed to ensure that the states of all the follower agents can converge to its leader agent s state in fnite time.Finally,some simulation results are presented to illustrate the efectiveness of our theoretical results.  相似文献   

11.
This paper addresses the distributed observer‐based leader‐follower attitude consensus control problem for multiple rigid bodies. An intrinsic distributed observer is proposed for each follower to estimate the leader's trajectory, which is only available to a subset of followers. The proposed observer can guarantee that the estimated attitude evolves on rotation matrices all the time, and it provides us with a simple way to design the attitude consensus control law. The dynamics of rigid bodies and distributed observer are both modeled directly on rotation matrices, so that the singularity and ambiguity can be avoided. Furthermore, adopting the idea of disturbance observer on vector space, a gyro bias observer on the rotation matrices is proposed. Based on the distributed observer, three types of attitude consensus control law are proposed, which are respectively on the basis of full‐state, biased angular velocity, and external disturbance combined with biased angular velocity. Finally, the SimMechanics experiments are provided to illustrate effectiveness of the proposed theoretical results.  相似文献   

12.
We solve the formation tracking control problem for mobile robots via linear control, under the assumption that each agent communicates only with one ‘leader’ robot and with one follower, hence forming a spanning-tree topology. We assume that the communication may be interrupted on intervals of time. As in the classical tracking control problem for non-holonomic systems, the swarm is driven by a fictitious robot which moves about freely and which is a leader to one robot only. Our control approach is decentralised and the control laws are linear with time-varying gains; in particular, this accounts for the case when position measurements may be lost over intervals of time. For both velocity-controlled and force-controlled systems, we establish uniform global exponential stability, hence consensus formation tracking, for the error system under a condition of persistency of excitation on the reference angular velocity of the virtual leader and on the control gains.  相似文献   

13.
寻找多智能体系统一致性的迭代学习方法   总被引:2,自引:0,他引:2  
本文利用迭代学习的方法研究了带头结点的多智能体系统的一致性问题.文中分别对单积分多智能体系统和一般的线性多智能体系统提出了迭代学习型的一致性算法.该算法对每一个从节点所设计的分布迭代学习序列可以保证从节点能完全跟随上头结点.假设头结点是全局可达的,对于有向拓扑连接图,给出了智能体达到完全一致的充分条件.最后,仿真实例说明了文中所给方法的有效性.  相似文献   

14.
This paper addresses the leader–follower consensus tracking problem for multi-agent systems with identical general linear dynamics and unknown external disturbances. First, a distributed extended state observer is proposed, where both the local states and disturbance of each agent are estimated simultaneously by using the relative output information between neighbors. Then a consensus algorithm is proposed for each agent based on the relative estimated states between neighbors and its own disturbance estimate. It is shown that, with the proposed observer-based consensus algorithm, the leader–follower consensus problem can be solved. Finally, we present a simulation example to demonstrate the effectiveness of the proposed algorithm.  相似文献   

15.
Luca  Fabio  Domenico  Mario   《Automatica》2008,44(5):1343-1349
The paper deals with leader–follower formations of nonholonomic mobile robots, introducing a formation control strategy alternative to those existing in the literature. Robots’ control inputs are forced to satisfy suitable constraints that restrict the set of leader possible paths and admissible positions of the follower with respect to the leader. A peculiar characteristic of the proposed strategy is that the follower position is not rigidly fixed with respect to the leader but varies in proper circle arcs centered in the leader reference frame.  相似文献   

16.
A leader–follower synchronization output feedback control scheme is presented for the ship replenishment problem where only positions are measured. No mathematical model of the leader ship is required, and the control scheme relies on nonlinear observers to estimate velocity and acceleration of all ships to realize the feedback control law. The scheme yields semi-global uniform ultimate boundedness of the closed-loop errors. The bound is a function of the main ship acceleration, and under the assumption of zero main ship acceleration the closed-loop errors are semi-globally exponentially converging. The results are verified through experiments on a model-scale ship.  相似文献   

17.
This paper studies the semi‐global leader‐following consensus problem for a group of linear systems in the presence of both actuator position and rate saturation. Each follower agent in the group is described by a general linear system subject to simultaneous actuator position and rate saturation. For each follower agent, we construct both a linear state feedback control law and a linear output feedback control law by using low gain approach. We show that semi‐global leader‐following consensus can be achieved by using these control laws when the communication topology among follower agents is a connected undirected graph, and the leader is a neighbor of at least one follower. Simulation results illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
周峰  吴炎烜 《自动化学报》2015,41(1):180-185
研究了leader有控制输入且followers未知该输入条件下的线性多智能 体一致性跟踪问题.提出两种一致性跟踪算法,证明两种算法在leader到followers存在一棵 有向生成树且follower间拓扑是有向条件下,网络就能跟踪leader的状态.对于第一种算法,节点根 据相邻节点或leader的状态来求解其控制输入,并基于代数Riccati不等式给出 连续情形下算法稳定性条件.第二种算法直接利用相邻节点或leader的状态,使followers在上述网络条件下跟踪leader的状态,同样基于代数Riccati不等式给出算法稳定性条件. 仿真结果验证了算法的有效性.  相似文献   

19.
In this paper, asymptotically stable control laws are developed for leader–follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation. First, a kinematic controller is developed around control strategies for single mobile robots and the idea of virtual leaders. The virtual leader is replaced with a physical mobile robot leader, and an auxiliary velocity control law is developed in order to prove the global asymptotic stability of the followers which in turn allows the local asymptotic stability of the entire formation. A novel approach is taken in the development of the dynamical controller such that the torque control inputs for the follower robots include the dynamics of the follower robot as well as the dynamics of its leader, and two cases are considered—the case when the robot dynamics are known and the case when they are unknown. In the first case, a robust adaptive control term is utilized to account for unmodeled dynamics. For the latter, a robust adaptive term is augmented with a NN control law to achieve asymptotic tracking performance in contrast with most NN controllers where a bounded tracking error result is shown. Additionally, the NN approximation error is assumed to be a function of tracking errors instead of a constant upper bound, which is commonly found in the literature. The stability of the follower robots as well as the entire formation is demonstrated in each case using Lyapunov methods and numerical results are provided.  相似文献   

20.
We propose a decentralized control algorithm for transporting a single object by two nonholonomic mobile robots. One of the robots acts as a leader, whose trajectory is planned by itself or defined previously, whereas the other robot, referred to as a follower, follows the leader by keeping a constant distance from the leader. The follower can also avoid obstacles while following the leader without any absolute information about their position. Furthermore, the two mobile robots can realize an omnidirectional motion of the object when the leader broadcasts some simple information to the follower. Some simulation results show a good performance by the proposed decentralized control algorithm. This work was presented, in part, at the Seventh International Symposium on Artificial Life and Robotics, Oita, Japan, January 16–18, 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号