首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
介绍了漏磁检测技术的原理;设计了前端三维数据采集系统,实现了对漏磁缺陷信号的获取,并对信号特征进行分析与识别;采用有限元分析法对管道漏磁场理论进行了研究,建立三维漏磁检测模型,得到与实际获得的漏磁缺陷信号基本一致的仿真信号;通过有限元分析研究了提离值对荻取漏磁缺陷信号的影响.通过验证表明有限元分析法仿真漏磁缺陷信号的可靠性.  相似文献   

2.
基于波形特征提取的管道腐蚀缺陷量化研究   总被引:4,自引:1,他引:4  
蒋奇  隋青美 《中国机械工程》2004,15(23):2074-2077
针对当前管道腐蚀缺陷检测的研究现状,提出采用缺陷漏磁场的切向分量作为漏磁检测仪采样的原始信号,将管道内分布的96路传感器信号插值和周向展开显示,定义了缺陷漏磁信号波形的特征量,借助多元统计分析方法来定量评价缺陷外形的长、宽、深,实验得出该量化缺陷方法有效,精度在允许范围内。  相似文献   

3.
本文首先分析了钢管漏磁在线检测装置的组成,检测信号的采集方法。对采集到的钢管漏磁检测信号采用特征分析和非线性方法对缺陷大小进行定量识别。最后介绍了几个钢管漏磁在线检测在管道腐蚀检测、无缝钢管探伤和石油套管缺陷检测中的应用实例。  相似文献   

4.
钢管漏磁在线检测技术研究   总被引:1,自引:0,他引:1  
本文首先分析了钢管漏磁在线检测装置的组成,检测信号的采集方法.对采集到的钢管漏磁检测信号采用特征分析和非线性方法对缺陷大小进行定量识别.最后介绍了几个钢管漏磁在线检测在管道腐蚀检测、无缝钢管探伤和石油套管缺陷检测中的应用实例.  相似文献   

5.
储罐是石油、石化工业中重要的设备,储罐底板腐蚀是储罐安全隐患之一。漏磁检测方法是目前储罐底板检测研究的一个重要方向。根据缺陷漏磁信号的特征,将经验模态分解方法(EMD)与小波去噪方法相结合,对漏磁信号进行去噪处理。采用BP神经网络模型对储罐底板缺陷进行量化分析研究,构建了缺陷几何参数预测BP神经网络模型,并运用有限元分析所得到的数据为BP网络训练样本,用人工模拟缺陷的漏磁信号测试BP神经网络。网络训练和测试结果符合储罐底板缺陷量化的精度要求。  相似文献   

6.
针对油气管道腐蚀缺陷定量分析精度很难提高的现状,通过有限元仿真分析方法,研究管道内缺陷尺寸与漏磁场分布之间的关系,给出了缺陷深度、宽度、长度对漏磁信号特征的影响规律,为提高管道缺陷量化分析精度提供了理论依据。  相似文献   

7.
漏磁检测是管道无损检测的常用方法,也是最有效方法之一.在检测管道的过程中,对于不同的缺陷会检测到不同的漏磁信号.通过建立管道检测的实体模型,对管道斜向裂纹缺陷所产生的漏磁信号运用ANSYS有限元软件进行模拟仿真,从仿真信号中的磁通密度纵横向矢量图中,直观地显示了漏磁场附近的特点,找到缺陷轮廓及参数.利用有限元可以分析出,缺陷漏磁场的峰值会随着裂纹的倾斜角度、宽度、深度、提离值的大小变化而变化,可以方便地建立大量大小不一形状不同的缺陷样本库,为缺陷的识别提供依据并为定量分析做准备,为进一步对漏磁场的研究打下基础.  相似文献   

8.
蔡少川 《中国机械工程》2006,17(21):2201-2203,2208
针对管道缺陷漏磁检测信号中存在严重噪声干扰的问题,将经验模态分解方法用于漏磁检测信号的噪声分离和有效信号提取,对实际测试的与输油管道材质相同且具有人为模拟缺陷的漏磁信号进行处理,结果表明,该方法可以很好地抑制噪声从而得到清晰的、表征缺陷特征的有用信号,达到与小波变换相同的处理效果,同时克服了小波方法中基函数选择困难的问题。  相似文献   

9.
为了应用漏磁检测技术检测管道缺陷,需要对缺陷信号进行分析。在漏磁检测原理的基础上,运用三种磁偶极子模型来描述各种表面缺陷。分析了缺陷参数对漏磁信号的影响。  相似文献   

10.
余志  吴文秀  殷全  赵峰 《机械》2006,33(12):42-43
利用有限元分析软件作为仿真分析工具,对不同表面缺陷所产生的漏磁信号进行仿真分析,仿真结果表明,不同缺陷所产生的漏磁信号不同,缺陷的参数与其所产生的漏磁信号的参数之间有一定的对应关系。通过大量的模拟仿真数据和实测数据可找出这种对应关系,从而为缺陷的鉴别和钻杆使用寿命的评价提供依据。  相似文献   

11.
漏磁检测广泛应用于铁磁性材料设备的在线检测当中,是一种有效的缺陷检测方法。如何利用缺陷漏磁信号进行三维不规则缺陷轮廓重构是漏磁检测中的关键问题。然而,三维不规则缺陷漏磁检测的有限元模型计算量大,因此难以快速获得精确的漏磁信号,并且由于缺陷重构的不适定性,研究中不容易获得不规则缺陷的精确轮廓。本文提出了一种用于计算三维不规则缺陷漏磁信号的单元磁偶极带叠加模型,并验证了使用该正演模型进行漏磁计算的有效性,针对三维缺陷轮廓重构的高维优化问题,提出了一种带边界约束的基于信赖域的投影Levenberg-Marquart算法,实现了三维不规则缺陷轮廓的重构。实验结果表明:该三维不规则缺陷重构方法不仅不需要大量的漏磁检测数据,并且相对于群智能算法,重构误差降低了90.1%,最大深度误差降低了53.9%,耗费时间减少了96.1%,实现了高精度的缺陷重构。  相似文献   

12.
基于微分磁导率的铁磁性材料无损检测新方法   总被引:1,自引:0,他引:1       下载免费PDF全文
利用微分磁导率变化特性,提出了一种可对材料的宏观缺陷进行快速扫查的无损检测新方法。首先,将铁磁性材料置于偏置磁化场环境下,缺陷将导致内部磁通的畸变;其次,磁通畸变进一步体现在材料表面微分磁导率分布的差异性;再次,通过特殊设计的微分磁导率检测探头,对材料表面微分磁导率的分布进行扫查;最后,由磁导率分布差异获得材料内部的不连续性信息,从而实现对缺陷的无损检测。开展了系列验证实验,结果表明,相对于传统的漏磁检测方法,新方法具有磁化强度低、磁通泄漏少、检测信号稳定的特点。新方法正、反面缺陷探测信号存在差异,在缺陷深度识别方面亦存在优势。  相似文献   

13.
管道内外壁缺陷的有效区分是对缺陷进行有效量化的前提,提出一种基于动生涡流的高速漏磁检测过程中管道内外壁缺陷的定位区分方法,利用涡流磁场与外磁场的耦合作用时内外壁磁场信号的变化差异特征区分缺陷位置。首先建立高速漏磁检测数学模型,分析了涡流分布特点以及涡流磁场与外磁场耦合作用规律,利用有限元方法计算分析不同位置时,耦合作用规律对管道内外壁磁化状态影响及内外壁缺陷漏磁场信号差异特征;设计高速漏磁检测实验平台,对不同运行速度、不同检测位置处钢管内外壁缺陷区分效果进行实验研究。结果表明,接近磁化线圈位置时,管壁内产生的涡流磁场方向与管道外壁磁场方向相同、与管道内壁磁场方向相反,在离开磁化线圈位置时,涡流磁场方向与管道外壁磁场方向相反、与管道内壁磁场方向相同;不同检测位置处,管壁磁场变化规律相反,且速度越快,磁化状态影响受影响程度越大,内外壁漏磁场信号差异特征越明显,高速检测时可有效对管道内外壁缺陷进行定位区分,实验结果和理论分析具有很好的一致性。  相似文献   

14.
研究焊接缺陷磁光成像检测方法,基于法拉第旋转效应,分析交变磁场下焊接缺陷磁光成像特征与漏磁场之间的关系.建立焊接缺陷的三维有限元模型,对不同类型和宽度的焊接缺陷漏磁场分布进行模拟,并在交变磁场激励下对不同焊接缺陷进行磁光成像无损检测试验,通过试验验证了焊接缺陷检测模型的有效性.研究结果表明,漏磁场分布与缺陷的类型和宽度...  相似文献   

15.
数据采集的快速性和实时性是钢管在线检测系统的关键,本文基于 FIFO技术设计高速数据采集板,并在此基础上利用编写虚拟设备驱动程序的方法实现了Win9x下的高速实时数据采集,有效地解决了钢管缺陷漏磁检测的数据采集问题,同时实现了对钢管缺陷信号进行实时采集和跟踪分析,对比实际探伤缺陷特性曲线与试验样管特性曲线,标记缺陷的位置和相对峰值大小,从而达到钢管检测的目的。  相似文献   

16.
陈潇 《机械与电子》2020,38(1):57-61
为保障高速铁路的行车安全,针对现有高速铁路钢轨轨面伤损检测的需求,设计了一种携带有漏磁检测装置的钢轨探伤小车,并分析了钢轨探伤小车的结构组成和漏磁检测装置的检测原理。同时,在有限元分析软件 ANSYS中建立了钢轨轨面漏磁检测的三维有限元模型,针对钢轨轨面主要的裂纹类和圆柱形缺陷,在软件中进行了钢轨缺陷的漏磁场特征仿真分析。通过计算分析,得出钢轨缺陷漏磁检测信号与传感器提离值、裂纹类缺陷长度、裂纹类缺陷深度、圆柱形缺陷直径、圆柱形缺陷深度的对应变化关系。最后,通过制备人工裂纹类和圆柱形钢轨缺陷,搭建起钢轨漏磁检测的试验平台,通过漏磁检测试验,验证了软件仿真结果的正确性。  相似文献   

17.
王太勇  胡世广  杨涛  秦旭达  赵坚 《中国机械工程》2005,16(20):1802-1804,1820
对油管缺陷量化识别技术进行了研究,基于缺陷分类,通过分析缺陷漏磁信号,选取了信号特征量并进行了分类;利用人工神经网络解决了信号特征量与缺陷几何外形特征之间的非线性映射问题;建立了基于特征分类的油管缺陷量化识别模型。实验表明,该技术能满足油管缺陷量化识别精度要求,应用前景广泛。  相似文献   

18.
基于模糊模式识别的裂纹漏磁信号定量分析   总被引:8,自引:0,他引:8  
针对无损探伤难以实现定量检测的问题,探讨模糊模式识别定量分析裂纹漏磁信号的原理和方法,通过在标准试件上大量实验及在具有自然裂纹的工件上测试,取得了满意的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号