首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photocatalytic discoloration of Reactive Blue 19 (RB-19), a textile anthraquinone dye, were investigated in aqueous suspensions containing TiO2 or ZnO as catalysts. The reactions can be mathematically described as a function of parameters pH, amount of catalyst and dye concentration being modeled by the use of response surfaces methodology. Optimized values for the concentration of the catalyst and the pH for each reaction systems were determined. ZnO showed greater degradation activity than TiO2 when the reaction was carried out in a 4 l circulating reactor under optimized conditions. The figure-of-merit electric energy per order (EE/O) allows to determine that the electrical energy cost of reducing the color by one order of magnitude was three times higher for TiO2. In both reaction systems, the acute toxicity evolved from zero to around 50 toxicity units in the initial stages of irradiation, depleting to minimal values after 30 min of reaction.  相似文献   

2.
A nanometer coupled oxide ZnO–SnO2 was prepared using the co-precipitation method employing NH3·H2O as the precipitant. The oxide was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and UV diffuse reflectance spectrum (DRS). The photocatalytic activity of nanometer coupled oxides was studied using methyl orange as a mode organic pollutant. The relationship between the photocatalytic activity and the microstructure of nanometer coupled oxides was also discussed in the paper. Experimental results showed that the nanometer coupled oxides mainly consist of nanometer ZnO and SnO2, and they have the same excellent photocatalytic activity as Degussa P25 TiO2 for the degradation of methyl orange (MO). Moreover, the photocatalytic activity of the coupled oxides increases gently at first, then decreases rapidly with the increase of the calcination temperature. But a small amount of nanometer Zn2SnO4 was formed in the mixture of coupled oxides when the calcination temperature was higher than 700 °C.  相似文献   

3.
The production of hydrogen from aqueous Pt/TiO2 suspensions illuminated with UV–vis light has been examined in the absence and in presence of azo-dyes in solution. The effects of operational variables, including dye concentration, solution pH and temperature, on the rate of hydrogen production were investigated. It has been found that deposition of Pt (0.5 wt.%) on the semiconductor surface results in an increase of the H2 production rate, which goes through a maximum with time of irradiation and then drops to steady-state values comparable to those obtained over bare TiO2. Both, maximum and steady-state rates obtained over Pt/TiO2 suspensions were found to increase with increasing solution pH and temperature. Addition of small quantities of azo-dyes in solution results in significantly enhanced rates of H2 production for a period which depends on dye concentration, solution pH and, to a lesser extent, solution temperature. It is proposed that the dye acts as a scavenger of photogenerated oxidizing species while it is degraded toward CO2 and inorganic ions. When complete mineralization is achieved, oxygen can no longer be removed from the photocatalyst surface and the rate drops to steady-state values, comparable to those obtained in the absence of azo-dye in solution. The amount of additional H2 produced is directly proportional to the amount of dye added in the solution. The rate increases with increasing solution pH, where dye degradation is faster, indicating that the process is limited by the rate of consumption of photogenerated oxygen. It is concluded that, under certain experimental conditions, it is possible to obtain significantly enhanced rates of photoinduced hydrogen production from Pt/TiO2 suspensions with simultaneous mineralization of azo-dyes. The process could be used for combined production of fuel H2 and degradation of organic pollutants present in water.  相似文献   

4.
二氧化钛凭借优异的光催化性能,越来越受到人们的广泛关注和重视。以钛酸四丁酯为原料,利用水解-水热-干燥/煅烧工艺制备得到未掺杂TiO2光催化剂和掺钒TiO2光催化剂,利用其对甲基橙溶液的降解率做了比较分析。结果表明,以钛酸四丁酯为原料,采用溶胶-凝胶法制备钒掺杂TiO2光催化剂是可行的。制备V/TiO2产品的最佳工艺条件:钒钛质量比为6∶100、水热温度为160 ℃、水热时间为12 h,120 ℃下干燥14 h。紫外光照射条件下,甲基橙光催化降解效率达到99.10%,降解时间小于45 min。  相似文献   

5.
The heterogeneous photocatalytic oxidation of fumaric, maleic and oxalic acids over TiO2 has been investigated. For aqueous suspensions at pH lower than the point of zero charge (pzc) of TiO2, the photocatalytic degradation of the three studied diacids follows the Langmuir–Hinshelwood kinetic model, with the rate constant of the process decreasing in the order oxalic acid>maleic acidfumaric acid. At these low pH media, the adsorption of the organic diacids onto TiO2 particles is a key feature for their degradation, which is initiated by a photo-Kolbe process. For fumaric and maleic acids, a cistrans isomerisation induced by the interaction between adsorbed molecule and semiconductor surface occurs. At pH’s higher than the pzc of TiO2 the rate of oxalic acid oxidation decreases noticeably, while fumaric and maleic acids are both efficiently degraded in homogeneous phase by reacting with OH√ radicals photochemically generated on the TiO2 surface, giving rise to a significant increment of both isomers degradation rate with increasing pH. At these pH’s higher than the pzc of the TiO2, the three studied diacids show a very low degree of adsorption onto the semiconductor surface and no evidence of cistrans isomerisation for both maleic and fumaric acids is detected. In accordance with the observed pH effects on degradation rate and over detected intermediates, a different mineralisation pathway is proposed as function of initial pH.  相似文献   

6.
Gold loaded on TiO2 (Au/TiO2) catalysts were prepared using Au(I)–thiosulfate complex (Au(S2O3)23−) as the gold precursor for the first time. The samples were characterized by UV–vis diffuse reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption flame emission spectroscopy (AAS), and X-ray photoelectron spectroscopy (XPS) methods. Using Au(S2O3)23− as gold precursor, ultra-fine gold nanoparticles with a highly disperse state can be successfully formed on the surface of TiO2. The diameter of Au nanoparticles increases from 1.8 to 3.0 nm with increasing the nominal Au loading from 1% to 8%. The photocatalytic activity of Au/TiO2 catalysts was evaluated from the analysis of the photodegradation of methyl orange (MO). With the similar Au loading, the catalysts prepared with Au(S2O3)23− precursor exhibit higher photocatalytic activity for methyl orange degradation when compared with the Au/TiO2 catalysts prepared with the methods of deposition–precipitation (DP) and impregnation (IMP). The preparation method has decisive influences on the morphology, size and number of Au nanoparticles loaded on the surface of TiO2 and further affects the photocatalytic activity of the obtained catalysts.  相似文献   

7.
TiO2 (anatase) with different microstructure was synthesized by thermal hydrolysis of the titanyl sulfate and studied by X-ray powder diffraction, high resolution transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The effect of titanium dioxide structure, regular or distorted, on the photocatalytic degradation of Acid Orange 7 Dye (AO7) in water upon ultraviolet light was studied. It was found that synthesized TiO2 possesses a relatively high reactivity when illuminated but also show different adsorption in the dark. The relationship between these behaviors depends on the real structure of the catalysts. Catalysts with a perfect structural ordering formed after heating at temperature higher than 500 °C show better photocatalytic performance. Small amount of Pt added into the TiO2 structure was found to improve further the catalyst reactivity. Pt-modified titania catalysts oxidize AO7 more efficiently than P-25 Degussa TiO2. Doping effect of Pt on the structural and photocatalytic properties of the samples is discussed.  相似文献   

8.
The treatment of a model solution containing 13 compounds typically found in olive mill wastewaters (OMW), at a concentration of 50 mg/L each, by means of sonophotocatalysis over 0.75 g/L Degussa TiO2 suspensions was studied. Experiments were conducted at an ultrasound frequency and intensity of 80 kHz and 120 W, respectively, ultraviolet power of 9, 250 and 400 W with or without the addition of 0.118 mol/L H2O2. Treatment efficiency was assessed following changes in total phenols (TPh) concentration, individual species concentration, chemical oxygen demand (COD), total organic carbon (TOC) and ecotoxicity. In general, photocatalytic degradation increased with increasing UVA power, while sonolysis alone failed to cause any degradation. Process coupling and addition of extra oxidant resulted in substantial levels of degradation. For instance, sonophotocatalytic treatment at 400 W UVA power with H2O2 for 120 min resulted in complete mineralization followed by significant toxicity reduction. TiO2 characterization before and after use showed that the catalyst suffered no composition or morphology changes during treatment. However, a substantial surface area increase was noted and this was attributed to the ultrasound de-aggregating catalyst particles. Preliminary tests with an actual OMW showed that the sonophotocatalytic/H2O2 treatment is a promising technology for this type of effluents.  相似文献   

9.
Solar TiO2-photocatalysis was applied to waters from a natural wastewater treatment plant located in the Universidad de Las Palmas de Gran Canaria. Degussa P-25 TiO2 and its mixture with activated carbon (AC–TiO2) were used as catalysts. The presence of ozone and certain ions such as phosphates on the photocatalytic degradation of organic matter was also studied.

Disinfection experiments have provided interesting results, particularly when using the catalyst AC–TiO2 and ozone, since total disinfection was achieved in less than 60 min. No bacterial reappearance at 24 or 48 h was observed. Additionally, this catalyst gave important TOC and some ions concentrations reductions.

Studies in catalyst reuse revealed that the catalyst AC–TiO2 showed almost no deactivation.  相似文献   


10.
李曼弯  张美  毕先均 《工业催化》2015,23(12):986-990
在[Bmim]PF6离子液体介质中微波辅助制备稀土元素Ce掺杂改性的TiO_2光催化剂TiO_2-Ce,以甲基橙溶液和苯酚溶液为模拟污染物,在紫外光照和微波辐射-紫外光照降解条件下考察TiO_2-Ce催化剂的光催化活性。利用荧光技术以对苯二甲酸作为荧光探针检测TiO_2-Ce催化剂表面产生的羟基自由基,并对光催化降解反应进行动力学分析,以了解光催化降解反应机理。结果表明,通过优化反应条件制得的TiO_2-Ce催化剂具有较高光催化降解活性和热稳定性,在紫外光照和微波辐射-紫外光照条件下降解60 min后,甲基橙降解率分别为98.6%和99.3%,苯酚降解率分别为96.6%和97.2%。荧光光谱分析表明,TiO_2-Ce在微波辐射-紫外光照条件下产生的羟基自由基比紫外光照多,因而微波辐射-紫外光照具有强化TiO_2-Ce降解模拟污染物作用的效果。反应动力学数据表明,TiO_2-Ce光催化降解甲基橙溶液反应呈一级反应动力学规律,其表观速率常数k最大值为0.056 2 min-1。  相似文献   

11.
以高岭石为载体,以钛酸四丁酯为前驱体,采用溶胶-凝胶法制备金属氧化物掺杂高岭土纳米二氧化钛光催化复合材料。采用X射线衍射(XRD)、红外光谱(FT-IR)和拉曼光谱(Raman)对复合材料进行表征,并通过在紫外光下降解云母珠光工业废水来考察其光催化性能。研究了不同金属氧化物掺杂浓度对复合材料光催化活性的影响。实验结果表明:金属氧化物三氧化二铁、氧化锌掺杂使锐钛矿二氧化钛晶相特征衍射峰宽化,掺杂生成钛铁矿、红锌矿新相,影响锐钛矿二氧化钛结晶度。在紫外光下降解6 h,掺杂质量分数为0.5%的三氧化二铁对废水降解率为98.8%,掺杂质量分数为1.5%的氧化锌对其降解率为91.4%。  相似文献   

12.
In the present study TiO2/clay composites were synthesized by dispersion of TiO2 on the surfaces of a natural montmorillonite and a synthetic hectorite in order to increase the sorption ability of TiO2 and therefore its photocatalytic action. Six materials with different loading in TiO2 (15, 30 and 55 wt%) were prepared and characterized by several analytical techniques including XRD, BET and SEM analysis. The synthetic procedure allows the development of delaminated layers for hectorite–TiO2 samples, while in the case of montmorillonite–TiO2 composites we have the formation of a more lamellar-like aggregation. It was found that, the greater the percentage of TiO2, the greater the pore volume and the specific surface area of the montmorillonite–TiO2 samples. On the contrary, in the case of hectorite–TiO2 samples, as the content of TiO2 increases, the surface area and pore volume decreases. The photocatalytic efficiency of the nanocomposite catalysts was evaluated using a chloroacetanilide herbicide (dimethachlor) in water as model compound. The primary degradation of dimethachlor followed pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. All supported catalysts exhibit good photodegradation efficiency and their overall removal efficiency per mass of TiO2 was better than that of bare TiO2 produced by the sol–gel method. In conclusion, together with their good sedimentation ability the composite materials could be considered as a promising alternative for the removal of organic water contaminants.  相似文献   

13.
采用X射线衍射分析、扫描电镜分析和傅里叶红外光谱分析对溶胶-凝胶法制得的负载型微米级TiO2/活性炭(AC)催化剂性能进行了表征,并对其在光催化-膜分离耦合反应装置中光催化降解酸性红B废水时的性能和膜通量的影响进行了研究。结果表明:在最佳煅烧温度400℃时负载的TiO2以锐钛矿为主,与载体活性炭之间以Ti-O-C键结合,且分布较为均匀;微米级TiO2/AC催化剂的光催化降解性能随其煅烧温度的升高和粒径的减小而均呈现为先增加、后降低的趋势,TiO2/AC对膜通量的影响则随煅烧温度的升高和粒径的减小而呈先降低、后增加的趋势,且TiO2/AC粒径以10.272μm为宜。椰壳活性炭为载体的TiO2/AC催化剂的光催的化降解性能高于褐煤活性炭为载体的,且前者对膜通量的影响更小。微米级TiO2/AC催化剂的光催化降解性能高于商业TiO2的,且对膜通量的影响比商业TiO2的低。  相似文献   

14.
以L-色氨酸(L-Trp)为生物模板,采用简单水解及煅烧后制备了球形结构TiO2纳米光催化剂。通过X射线衍射、扫描电子显微镜、红外光谱、紫外-可见漫反射光谱、光致发光光谱和N2吸附-解吸等方法对制得的TiO2纳米材料进行表征。在催化剂合成过程中,L-Trp作为生物模板发挥至关重要的作用,能够指导球形结构纳米TiO2的形成。考察了不同煅烧温度下制备的TiO2样品光催化活性,结果表明550℃时制备的TiO2样品具有优异的光催化活性,紫外光照射30min对甲基橙溶液的降解率达到95%左右,主要是由于较大比表面积和球形结构的协同效应。光催化剂稳定性实验表明,所制备的TiO2纳米材料可作为一种实用有效的光催化剂用于紫外光照射下降解有机染料。同时,对L-Trp辅助下球形结构TiO2纳米颗粒的可能生长机理进行讨论。  相似文献   

15.
The photocatalytic degradation of a sulfonylurea herbicide, iodosulfuron methyl ester (IOME), has been studied in TiO2 aqueous suspensions under UV irradiation. The influence of various parameters such as initial concentration, TiO2 concentration and light intensity on the kinetic process was investigated. Disappearance rate of iodosulfuron followed pseudo-first order kinetics. A special attention was devoted to the identification of intermediates, using a new analytical approach which consists of coupling HPLC–DAD (UV), HPLC–ESI-MS and HPLC–1H NMR techniques after a SPE pre-concentration step. By combining UV, MS and NMR data, up to 20 degradation products were unambiguously identified. Furthermore, 1H NMR data allowed the differentiation of several positional isomers, in particular those of hydroxylation resulting from the attack of OH radicals on the benzene ring of IOME. Kinetic evolution profiles of main intermediates, end products (NO3, NH4+, SO42−) and total organic carbon (TOC) were also examined in detail. From obtained kinetic and analytical results, the presence of privileged sites for the attack of OH radicals was shown and a detailed degradation pathway was proposed.  相似文献   

16.
An important improvement of the photocatalytic activity of sol–gel prepared TiO2 has been achieved by sulphate pre-treatment, calcination at high temperature and further platinisation of the samples.

The presence of sulphuric acid clearly stabilised TiO2 surface area against sintering, maintaining at the same time anatase phase until higher calcination temperatures than in non-sulphated samples. Platinisation of the samples with different nominal amounts of platinum (from 0.5 to 2.5 wt%) was performed and the influence of sulphate treatment on the dispersion and deposit size of platinum on the TiO2 surface was studied.

Characterisation results and photocatalytic activity of these catalysts were compared with those of unmodified TiO2. Simultaneously sulphated and platinised TiO2 samples were highly active for phenol degradation, used as model reaction for the photocatalytic studies, having higher activities than only platinised or only sulphated samples. The activity of these samples were several orders of magnitude higher than that of the commercial TiO2 Degussa P25 (platinised or unmodified) as well, with independence of the nominal amount of platinum of the samples.

A wide characterisation of the samples was performed and correlations between characterisation results and activity properties are reported.  相似文献   


17.
The photocatalytic efficiency of TiO2 immobilised on various supports (glass, cement, red brick and inorganic fibres), using different techniques (sputtering, sol–gel dip-coating, patented method for inorganic fibres), are compared with the photocatalytic efficiency of TiO2 Degussa P25 in suspension 2 g l−1, for the degradation of 3-nitrobenzenesulfonic acid (3-NBSA) and 4-nitrotoluenesulfonic acid (4-NTSA). In all cases, the fixation of TiO2 on solid supports appreciably reduces the photocatalytic efficiency. The best results were obtained with TiO2 on inorganic fibres.  相似文献   

18.
Bimodal nanocrystalline mesoporous TiO2 powders with high photocatalytic activity were prepared by a hydrothermal method using tetrabutylorthotitanate (TiO(C4H9)4, TBOT) as precursor. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption measurements. The photocatalytic activity of the as-prepared TiO2 powders was evaluated by the photocatalytic degradation of acetone (CH3COCH3) under UV-light irradiation at room temperature in air. The effects of hydrothermal temperature and time on the microstructures and photocatalytic activity of the TiO2 powders were investigated and discussed. It was found that hydrothermal treatment enhanced the phase transformation of the TiO2 powders from amorphous to anatase and crystallization of anatase. All TiO2 powders after hydrothermal treatment showed bimodal pore-size distributions in the mesoporous region: one was intra-aggregated pores with maximum pore diameters of ca. 4–8 nm and the other with inter-aggregated pores with maximum pore diameters of ca. 45–50 nm. With increasing hydrothermal temperature and time, the average crystallite size and average pore size increased, in contrast, the Brunauer-Emmett-Teller (BET) specific surface areas, pore volumes and porosity steadily decreased. An optimal hydrothermal condition (180 °C for 10 h) was determined. The photocatalytic activity of the prepared TiO2 powders under optimal hydrothermal conditions was more than three times higher than that of Degussa P25.  相似文献   

19.
近年来,二氧化钛被广泛应用于污水处理领域。为合理改善二氧化钛在光催化应用中的缺陷,提高二氧化钛的使用范围,首先采用水热法制备了介孔型分子筛SBA-15,将二氧化钛沉积到介孔型分子筛上,再通过硝酸钇的浸渍将不同质量的钇沉积到分子筛上,制备出新型光催化剂钇-二氧化钛-SBA-15(Y-TiO2-SBA-15)。采用X射线衍射仪(XRD)、透射电镜(TEM)、元素分析仪(EDS)、傅里叶红外光谱仪(FT-IR)和氮气吸附-脱附等对催化剂进行分析,并以甲基橙溶液为目标降解物考察了催化剂在不同条件下对甲基橙的的光降解能力。结果表明:在溶液pH=4且采用300 W氙灯照射140 min条件下,甲基橙脱色效果明显,降解率为93.1%。  相似文献   

20.
The photocatalytic degradation of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, a non-biodegradable nitrogenous organic compound) in water was optimised under UV radiation using titanium dioxide photocatalyst. The reactor used was a pilot scale cocurrent downflow contactor photocatalytic reactor (CDCPR), a system offering very high mass transfer efficiency. The effect of photocatalyst loading, initial substrate concentration, temperature, pH, and different combinations of UV, O2, H2O2 and TiO2 on the photocatalytic oxidation of DBU was investigated. The TiO2 photocatalyst used was Degussa VP Aeroperl P25/20, a granulated form of Degussa P-25, recently developed to ameliorate downstream catalyst separation problems. The CDCPR was fitted with an internally and vertically mounted 1.0 kW UV lamp. The reactions were carried out at 40–60 °C and 1 barg, with the reactor being operated in closed loop recycle mode and suspended photocatalyst being re-circulated. Optimisation of reaction conditions using a combination of TiO2, UV radiation and O2 gave the most rapid degradation and mineralisation of the DBU in comparison with other processes. Under optimised conditions, 100% degradation of DBU was achieved in 45 min, with a quantum yield of 7.39, using a 1 kW lamp, 0.5 g/dm3 TiO2, 100 mg/dm3 DBU, 1 barg, 50 °C and pH of 3.17. Investigating the reaction pathway and its modelling showed a first order dependency, incorporating the effect of first intermediates of degradation. The activation energy was found to be 54.68 kJ mol−1 showing a significant influence of temperature on the photocatalytic degradation of DBU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号