首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four micro-holes were made using micro-EDM on rake face of the cemented carbide (WC/TiC/Co) tools. MoS2, CaF2, and graphite solid lubricants were respectively embedded into the four micro-holes to form self-lubricated tools (SLT-1, SLT-2, and SLT-3). Dry machining tests on hardened steel were carried out with these self-lubricated tools and conventional tools (SLT-4). The cutting forces, average friction coefficient between tool and chip, and tool wear were measured and compared. It was shown that the cutting forces and tool wear of self-lubricated tools were clearly reduced compared with those of the SLT-4 conventional tool. The SLT-1 self-lubricated tool embedded with MoS2 just exhibited lower friction coefficient between tool and chip in cutting speed of less than 100?m/min; the SLT-2 self-lubricated tool embedded with CaF2 possessed lower friction coefficient in cutting speed of more than 100?m/min; and the SLT-3 self-lubricated tool embedded with graphite accomplished good lubricating behaviors steadily under the test conditions. It is indicated that cemented carbide inserts with four micro-holes on rake face embedded with appropriate solid lubricants on rake face is an effective way to reduce cutting forces and rake wear.  相似文献   

2.
A type of Si3N4/TiC micro-nanocomposite ceramic cutting tool material was fabricated using Si3N4 micro-matrix with Si3N4 and TiC nanoparticles. Cutting performance of the Si3N4/TiC ceramic cutting tool in dry cutting of hardened steel was investigated in comparison with a commercial Sialon insert. Hard turning experiments were carried out at three different cutting speeds, namely 97, 114, and 156 m/min. Feed rate (f) and depth of cut (a p) were fixed at 0.1 mm/rev and 0.2 mm, respectively. Results showed that cutting temperature increased rapidly to nearly 1000 °C with increasing cutting speed. The two types of cutting tools featured similar wear behavior. However, the Si3N4/TiC micro-nanocomposite ceramic cutting tool exhibited better wear resistance than the Sialon tool. Morphologies of crater and flank wear were observed with a scanning electron microscope. Results indicated that wear variation of the two types of ceramic cutting tools differed in the same conditions. Wear of the Si3N4/TiC micro-nanocomposite ceramic cutting tool is mainly dominated by abrasion and adhesion, whereas that of the Sialon ceramic cutting tool is dominated by abrasion, adhesion, thermal shock cracking, and flaking.  相似文献   

3.
TiAl matrix self-lubricating composites (TMC) with various weight percentages of Ti3SiC2 and MoS2 lubricants were prepared by spark plasma sintering (SPS). The dry sliding tribological behaviors of TMC against an Si3N4 ceramic ball at room temperature were investigated through the determination of friction coefficients and wear rates and the analysis of the morphologies and compositions of wear debris, worn surfaces of TMC, and the Si3N4 ceramic ball. The results indicated that TMC with 10 wt% (Ti3SiC2-MoS2) lubricants had good tribological properties due to the unique stratification subsurface microstructure of the worn surface. The friction coefficient was about 0.57, and the wear rate was 4.22 × 10?4 mm3 (Nm)?1. The main wear mechanisms of TMC with 10 wt% (Ti3SiC2-MoS2) lubricants were abrasive wear, oxidation wear, and delamination of the friction layer. However, the main wear mechanisms of TMC without Ti3SiC2 and MoS2 lubricants were abrasive wear and oxidation wear. The continuous friction layer was not formed on the worn surfaces. The self-lubricating friction layer on the frictional surface, different phase compositions and hardness, as well as density of TMC contributed to the change in the friction coefficient and wear rate.  相似文献   

4.
O.O. Adewoye  T.F. Page 《Wear》1981,70(1):37-51
Electron optical microscopy was employed to study the friction and wear of commercial polycrystalline varieties of SiC and Si3N4 in air at ambient temperature. Friction and wear tests were conducted in a reciprocating configuration with conical riders (both diamond and ceramic) sliding on a flat ceramic substrate. Worn surfaces were examined by both scanning electron microscopy and transmission electron microscopy. In general, friction and wear in the diamond-ceramic couples were severe. Friction with ceramic-ceramic couples was low, with friction coefficients between 0.1 and 0.4, wear being absent in single-pass tests.With ceramic-ceramic couple multipass systems, wear of Si3N4 occurs by plastic deformation which increases in severity with sliding distance accompanied by a corresponding increase in friction coefficient. With SiC, wear occurs by a mixture of intergranular fracture due to grain boundary weakness and plastic deformation.  相似文献   

5.
Fei Zhou  Yuan Wang  Feng Liu  Yuedong Meng  Zhendong Dai 《Wear》2009,267(9-10):1581-1588
It is evident that the micro-arc oxidation (MAO) ceramic coatings often exhibit relatively high friction coefficients as sliding against many mating materials. To reduce the friction coefficient for the MAO coatings, the duplex MAO/CrN coatings were deposited on 2024Al alloy using combined micro-arc oxidation and reactive radio frequency magnetron sputtering. The microstructure and phase of the duplex coatings were observed and determined using scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The friction and wear behaviors of the duplex coatings sliding against Si3N4 balls in air, water and oil were investigated using a ball-on-disk tribometer. The wear rate of the duplex coating was determined by non-contact optical profilometer and the wear tracks on the duplex coatings were observed by SEM. The results showed the CrN coatings mainly consisted of Cr, CrN and Cr2N phases. The duplex coatings/Si3N4 tribopair exhibited the highest friction coefficient in air, while displayed the lowest friction coefficient in oil. When the normal load and the sliding speed increased, the friction coefficient in air increased from 0.65 to 0.72, whereas decreased from 0.58 to 0.36 in water and 0.20 to 0.08 in oil. The specific wear rates for the duplex coatings in air were higher than those in oil. In comparison to the MAO coatings, the duplex MAO/CrN coatings displayed excellent tribological properties under the same conditions.  相似文献   

6.
Tool wear is an important machinability criterion. To reduce total machining costs, this study demonstrates the wear and tribological performance of four ceramic tools in dry high-speed turning of Ni-Co-Cr precipitation hardenable superalloy (Inconel 100). Wear of the tool materials and the structural and phase transformations at the tool–chip interface were investigated. Results obtained reveal that SiAlON ceramic outperformed other ceramic tool materials at different cutting speeds due to the formation of a large amount of mullite tribofilms on the tool face, which serve as a thermal barrier layer. Alumina ceramic with the addition of ZrO2 can be recommended for machining Inconel 100 at speeds above 150 m/min due to its ability to form thermal barrier ZrO2 tribofilms, which decrease the coefficient of friction at the tool–chip interface. Mixed alumina and an alumina matrix reinforced with SiCw were found to be unsuitable for machining age-hardened Inconel 100 superalloy.  相似文献   

7.

In this study, we investigated the effects of composite nano-Cu/WS2 lubricating oil and single-point diamond indentation-textures on improving the cutting performance of YG8 cemented carbide tools, which is crucial for textures tool applications. The aims of the study were to improve wear resistance and reduce chip adhesion at the tool’s rake face in cutting of titanium alloys. Dot textures with different spacings were fabricated on the surface of YG8 cemented carbide tools through the single-point diamond indentation method, and composite nano-Cu/WS2 lubricating oil was prepared. Orthogonal cutting tests were carried out under dry cutting and minimal quantity lubricated (MQL) conditions. Investigate the effect of different texture spacing on the cutting performance in the light of cutting forces, friction coefficient, the deformed chip thickness, tool adhesions, and chip morphology. The results show that the dot texture effectively improved the lubrication conditions in machining titanium alloys under the MQL conditions. The dot texture is effective at low speed in the dry cutting conditions. With the increase of cutting speed, the friction coefficient of dot texture tool is affected by texture spacing, and the friction coefficient of DT-200 tool is the smallest. In addition, composite nano Cu/WS2 lubricating oil forms a lubricating film on the wear path by atomizing the lubricating oil and stores it in the dot texture, which enhances the anti-wear performance in the cutting process and reduces the cutting force and friction coefficient at the tool chip interface. By evaluating cutting force, friction coefficient, chip and tool morphology, it is concluded that DT-100 tool is more effective in improving lubrication conditions.

  相似文献   

8.
在Al2O3/TiC陶瓷刀具基体内加入固体润滑剂CaF2来改善其摩擦学特性,制备出Al2O3/TiC/CaF2自润滑陶瓷刀具.以该陶瓷刀具对45钢进行干切削试验,结果表明添加固体润滑剂的Al2O3/TiC/CaF2自润滑刀具的摩擦因数比未添加固体润滑剂的Al2O3/TiC陶瓷刀具显著降低,表现出了良好的减摩效果.在切削过程中,Al2O3/TiC/CaF2自润滑陶瓷刀具中的固体润滑剂由于受到摩擦和挤压作用而析出,能在刀具前刀面上形成润滑膜,可阻止刀-屑间的粘着,显著降低前刀面与切屑间的平均摩擦因数.对自润滑陶瓷刀具切削后磨损表面显微分析表明,前刀面在切削过程中形成了自润滑膜的生成、破损、脱落和再生的循环过程.因此,Al2O3/TiC/CaF2自润滑陶瓷刀具在其整个生命周期内始终具有润滑效果.  相似文献   

9.
A series of turning tests were conducted to investigate the cutting performance of ceramic tools in high-speed turning iron-based superalloys GH2132 (A286). Three kinds of ceramic tools, KY1540, CC650, and CC670 were used and their materials are Sialon, Al2O3–Ti(C,N), and Al2O3–SiCw, respectively. The cutting forces, cutting temperatures, tool wear morphologies, and tool failure mechanisms are discussed. The experimental results show that with the increase in cutting speed, the resultant cutting forces with KY1540 and CC670 tools show a tendency to increase first and then decrease while those for CC650 increase gradually. The cutting temperature increases monotonically with the increase in cutting speed. The optimum cutting speeds for KY1540 and CC650 when turning GH2132 are less than 100 m/min, while those for CC670 are between 100 and 200 m/min. Flank wear is the main reason that leads to tool failure of KY1540 and CC670 while notch wear is the main factor that leads to tool failure of CC650. Tool failure mechanisms of ceramic tools when machining GH2132 include adhesion, chipping, abrasion, and notching. Better surface roughness can be got using CC670 ceramic tools.  相似文献   

10.
With wide applications of nickel-based superalloys in strategic fields, it has become increasingly necessary to evaluate the performance of different advanced cutting tools for machining such alloys. With a view to recommend a suitable cutting tool, the present work investigated various machinability characteristics of Incoloy 825 using an uncoated tool, chemical vapor deposition (CVD) of a bilayer of TiCN/Al2O3, and physical vapor deposition (PVD) of alternate layers of TiAlN/TiN-coated tools under varying machining conditions. The influence of cutting speed (51, 84, and 124 m/min) as well as feed (0.08, 0.14, and 0.2 mm/rev) was comparatively evaluated on surface roughness, cutting temperature, cutting force, coefficient of friction, chip thickness, and tool wear using different cutting tools. Although the CVD-coated tool was not useful in decreasing surface roughness and temperature, a significant reduction in cutting force and tool wear could be achieved with the same coated tool under a high cutting speed of 124 m/min. On the other hand, the PVD-coated tool outperformed the other tools in terms of machinability characteristics. This might be attributed to the excellent antifriction and antisticking property of TiN and good toughness due to the multilayer configuration in combination with a thermally resistant TiAlN phase. Adhesion, abrasion, edge chipping, and nose wear were the prominent wear mechanisms of the uncoated tool, followed by the CVD-coated tool. However, remarkable resistance to such wear was evident with the PVD TiAlN/TiN multilayer-coated tool.  相似文献   

11.
WS2 and WS2/Zr self-lubricating soft coatings were produced by medium-frequency magnetron sputtering, multi-arc ion plating and ion-beam-assisted deposition technique on the cemented carbide YT15 (WC + 15 % TiC + 6 % Co) substrates. Microstructural and fundamental properties of these coatings were examined. Sliding wear tests against 40Cr-hardened steel using a ball-on-disk tribometer method were carried out with these coated materials. The friction coefficient and wear rates were measured with various applied loads and sliding speeds. The wear surface features of the coatings were examined using SEM. The results showed that the WS-1 specimen (with WS2/Zr composite coating) has higher hardness and coating/substrate critical load compared with that of the WS-2 specimen (only with WS2 coating). The friction coefficient of WS-1 specimen increases with the increase in applied load and is quite insensitive to the sliding speed. The wear rate of the WS-1 specimen is almost constant under different applied loads and sliding speeds. The WS-1 specimen shows the smallest friction coefficient and wear rate among all the specimens tested under the same conditions. The WS-1 specimen exhibits improved friction behavior to that of the WS-2 specimen, and the antiwear lifetime of the WS2 coatings can be prolonged through adding Zr additives. The self-lubricating and wear mechanism of the WS2/Zr coating was also found from the sliding wear tests.  相似文献   

12.
This paper proposes a new effective dry cutting tool named tungsten disulfide (WS2) soft-coated nano-textured self-lubricating tool which is fabricated by two steps. First, nano-texture is made on the tool–chip interface of rake face of uncoated YS8 (WC + TiC + Co) cemented carbide cutting inserts by femtosecond laser micromachining technology. Second, WS2 soft coating is deposited on the nano-textured tool by medium-frequency magnetron sputtering, multi-arc ion plating and ion beam assisted deposition technique. Dry turning tests on 45# quenched and tempered steel were carried out with three kinds of cutting tools: conventional YS8 tool, nano-textured tool (CFT), and WS2 soft-coated nano-textured self-lubricating tool (CFTWS). Results show that the cutting forces, cutting temperature, the friction coefficient at the tool–chip interface, and the antiadhesive effect of the nano-textured tools were significantly reduced compared with those of the conventional one. The CFTWS tool had the best cutting performance among all the tools tested under the same test conditions. Through cutting force and cutting temperature theoretical analysis and experimental results, four mechanisms responsible were found. The first one is explained as the formation of the WS2 lubricating film with low shear strength at the tool–chip interface, which was released from the surface nano textures and smeared on the rake face, and served as lubricating additive during dry cutting processes to reduce the cutting forces and cutting temperature. The second one is explained by the reduced contact length at the tool–chip interface of the nano-textured tools; the smaller direct contact area between the chip and tool rake face leads to less friction force, which can also contribute to the decrease of cutting forces and cutting temperature. The third one can be explained that because of the excellent lubricity of the WS2 lubricating film, the antiadhesive effect can be significantly improved which can reduce adhesive wear of the cutting tool and prolong the tool life. The fourth one can be explained that the advantage of CFTWS tool in cutting forces and cutting temperature is obvious in relatively high-speed and high-temperature conditions may be because of ultra-low friction coefficient, high temperature resistance, and the high oxidation resistance of WS2 soft coating which is not sensitive to high cutting temperature and high cutting speed can significantly improve the severe dry cutting environment.  相似文献   

13.
The different microstructures of silver–copper/molybdenum disulfide (Ag-Cu/MoS2) composites were manufactured by hot press and hot extrusion processes to investigate the electrical tribological behaviors of both the hot-pressed and hot-extruded composites under air and vacuum. The results showed that microstructures and properties of Ag-Cu/MoS2 composites were improved by hot extrusion, which decreased the wear rates rapidly in both air and vacuum. In air, hot extrusion could improve the transfer layer and tribofilm, resulting in a significant decrease in contact voltage drop, which goes from more than 70 mV in the hot-pressed composite to 30 mV at the hot-extruded composite. Under vacuum condition, some wear debris was melted on the worn surface and then transferred to the counterface to form the transfer layers, which led to the lower contact voltage drops under vacuum, about 6 mV in hot-pressed composites and 3 mV in hot-extruded composites. In addition, the severe adhesive and abrasive wear were attributed to the molten wear debris and transfer layer, resulting in a dramatic fluctuation in the friction coefficient in a vacuum.  相似文献   

14.
采用真空热压烧结工艺,以Al2O3/TiB2为基体、CaF2为添加剂制备了Al2O3/TiB2/CaF2(ABF)自润滑陶瓷刀具,并对其进行了摩擦磨损试验和淬硬钢干切削试验。在摩擦磨损试验过程中,测定了4种不同CaF2含量的ABF陶瓷材料样品。摩擦磨损试验结果表明,ABF材料的平均摩擦因数随着CaF2含量的增加而减小,这是因为固体润滑剂CaF2在磨损过程中生成的润滑膜起到了一定的减摩作用。将ABF刀具和普通陶瓷刀具(AG2)在120 m/min切削速度下对45淬硬钢进行干切削试验,切削试验结果表明,ABF前刀面的平均摩擦因数比AG2陶瓷刀具前刀面的平均摩擦因数要显著偏小,主要原因是ABF自润滑陶瓷刀具在高速切削时,固体润滑剂CaF2和自身TiB2的原位反应同时生成了润滑膜,这种双重机制下生成的润滑膜具有极佳的润滑性能,其润滑效果随温度和切削速度的增加而显著提高。  相似文献   

15.
In this study, we report that a layered Ti3AlC2 ceramic exhibited three distinct tribological behaviors at different vacuum degrees. It is firstly found that the layered Ti3AlC2 exhibited intrinsic self-lubricity under vacuum degree from 2.0×104 to 5 Pa with the coefficient of friction (CoF) as low as 0.2 and nearly no wear. Under lower 0.1 Pa and air atmosphere, however, it showed lubrication failure. Under lower 0.1 Pa, The CoF abruptly rose after transitory low friction in initial duration and deteriorated wear occurred in the Ti3AlC2. The CoF sluggishly ascended to stable value from 0.2 to 0.7 in air. The lubricating mechanism of Ti3AlC2 ceramic was proposed.  相似文献   

16.
The potential of coatings to protect components against wear and to reduce friction has led to a large variety of protective coatings. In order to check the success of coating modifications and to find solutions for different purposes, initial tests with laboratory tribometers are usually done to give information about the performance of a coating. Different Ti‐based coatings (TiN, Ti(C,N), and TiAlN) and NiP were tested in comparison to coatings with an additional diamond‐like carbon (DLC) top coating. Tests were done in laboratory air at room temperature with oscillating sliding (gross slip fretting) with a ball‐on‐disc arrangement against a ceramic ball (Al2O3). Special attention was paid to possible effects of moisture (relative humidity). The coefficient of friction was measured on line, and the volumetric wear at the disc was determined after the test from microscopic measurements of the wear scar and additional profiles. The friction and wear behaviour is quite different for the different coatings and depends more or less on the relative humidity. The DLC coating on top of the other coatings reduces friction and wear considerably. In normal and in moist air the coefficient of wear of the DLC top‐layer coating is significantly less than 10−6 mm3/Nm and the coefficient of friction is below 0.1. In dry air, however, there is a certain tendency to high wear and high friction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
TiN and TiAlN thin hard coatings have been widely applied on machine components and cutting tools to increase their wear resistance. These coatings have different wear behaviors, and determination of their wear characteristics in high-temperature and high-speed applications has great importance in the selection of suitable coating material to application. In this article, the wear behavior of single-layer TiN and TiAlN coatings was investigated at higher sliding speed and higher sliding distances than those in the literature. The coatings were deposited on AISI D2 cold-worked tool steel substrates using a magnetron sputtering system. The wear tests were performed at a sliding speed of 45 cm/s using a ball-on-disc method, and the wear area was investigated at seven different sliding distances (36–1,416 m). An Al2O3 ball was used as the counterpart material. The wear evolution was monitored using a confocal optical microscope and surface profilometer after each sliding test. The coefficient of friction and coefficient of wear were recorded with increasing sliding distance. It was found that the wear rate of the TiAlN coating decreases with sliding distance and it is much lower than that of TiN coating at longer sliding distance. This is due to the Al2O3 film formation at high temperature in the contact zone. Both coatings give similar coefficient of friction data during sliding with a slight increase in that of the TiAlN coating at high sliding distances due to the increasing alumina formation. When considering all results, the TiAlN coating is more suitable for hard machining applications.  相似文献   

18.
In this article, field-activated and pressure-assisted synthesis was employed to synthesize an ultra-hard, super-abrasive AlMgB14–TiB2 composite ceramic. The friction and wear performance of the AlMgB14–TiB2 composite were evaluated in ambient air at temperatures up to 800 °C by using a reciprocating ball-on-disk high-temperature tribometer. X-ray diffraction experiments were performed to study the crystal structure of worn surfaces of AlMgB14–TiB2 specimens at various temperatures. Scanning electron microscopy and energy dispersive analysis were used to examine the worn surface features and chemical composition of the AlMgB14–TiB2 composite, respectively. Results showed that the friction coefficient of the AlMgB14–TiB2 composite ranged from 0.45 to 0.55 below 300 °C, while the data obtained at 500 and 600 °C were about 0.65. The damage mechanism is transformed from mild abrasive damage at room temperature to adhesive wear at elevated temperature. In the case of 800 °C, the AlMgB14–TiB2 composite exhibited the lowest friction coefficient as the formation of a lubricious oxide film on the wear track.  相似文献   

19.
A type of Si3N4-based nanocomposites ceramic cutting tool material was prepared by the addition of nano-scale Si3N4W whisker and nano-scale TiN particle. Cutting performance of the Si3N4/Si3N4W/TiN nanocomposite ceramic tool in machining of cast iron was investigated in comparison with a commercial sialon ceramic tool, and the tool wear mechanism was studied. The two types of cutting tools have similar cutting performance at relatively low cutting parameters, while Si3N4/Si3N4W/TiN nanocomposite tool exhibits a better wear resistance than sialon tool at the relatively high cutting parameters. The wear of sialon ceramic cutting tool is dominated by the plastic deformation, abrasive action, microcracking, pullout of grains and chemical action at the higher cutting parameters. The higher mechanical properties, and the refined matrix grains, intragranular TiN grains and dislocation in the microstructure improve the resistances to plastic deformation, microcracking, and pullout of grains for Si3N4/Si3N4W/TiN nanocomposite ceramic cutting tool. The wear of Si3N4/Si3N4W/TiN nanocomposite ceramic cutting tool is dominated by the abrasive and chemical actions at the higher cutting parameters.  相似文献   

20.
MoS2–Sb2O3–C composite films exhibit adaptive behavior, where surface chemistry changes with environment to maintain the good friction and wear characteristics. In previous work on nanocomposite coatings grown by PVD, this type of material was called a “chameleon” coating. Coatings used in this report were applied by burnishing mixed powders of MoS2, Sb2O3 and graphite. The solid lubricant MoS2 and graphite were selected to lubricate over a wide and complementary range including vacuum, dry air and humid air. Sb2O3 was used as a dopant because it acts synergistically with MoS2, improving friction and wear properties. The MoS2–Sb2O3–C composite films showed lower friction and longer wear life than either single component MoS2 or C film in humid air. Very or even super low friction and long wear-life were observed in dry nitrogen and vacuum. The excellent tribological performance was verified and repeated in cycles between humid air and dry nitrogen. The formation of tribo-films at rubbing contacts was studied to identify the lubricating chemistry and microstructure, which varied with environmental conditions. Micro-Raman spectroscopy and Auger electron spectroscopy (AES) were used to determine surface chemistry, while scanning electron microscopy and transmission electron microscopy were used for microstructural analysis. The tribological improvement and lubrication mechanism of MoS2–Sb2O3–C composite films were caused by enrichment of the active lubricant at the contact surface, alignment of the crystal orientation of the lubricant grains, and enrichment of the non lubricant materials below the surface. Sb2O3, which is not lubricious, was covered by the active lubricants (MoS2 – dry, C – humid air). Clearly, the dynamics of friction during environmental cycling cleaned some Sb2O3 particles of one lubricant and coated it with the active lubricant for the specific environment. Mechanisms of lubrication and the role of the different materials will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号