首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hard turning is a profitable alternative to finish grinding. The ultimate aim of hard turning is to remove work piece material in a single cut rather than a lengthy grinding operation in order to reduce processing time, production cost, surface roughness, and setup time, and to remain competitive. In recent years, interrupted hard turning, which is the process of turning hardened parts with areas of interrupted surfaces, has also been encouraged. The process of hard turning offers many potential benefits compared to the conventional grinding operation. Additionally, tool wear, tool life, quality of surface turned, and amount of material removed are also predicted. In this analysis, 18 different machining conditions, with three different grades of polycrystalline cubic boron nitride (PCBN), cutting tool are considered. This paper describes the various characteristics in terms of component quality, tool life, tool wear, effects of individual parameters on tool life and material removal, and economics of operation. The newer solution, a hard turning operation, is performed on a lathe. In this study, the PCBN tool inserts are used with a WIDAX PT GNR 2525 M16 tool holder. The hardened material selected for hard turning is commercially available engine crank pin material.  相似文献   

2.
Decreasing vibration amplitude during end milling process reduces tool wear and improves surface finish. Mathematical model has been developed to predict the acceleration amplitude of vibration in terms of machining parameters such as helix angle of cutting tool, spindle speed, feed rate, and axial and radial depth of cut. Central composite rotatable second-order response surface methodology was employed to create a mathematical model, and the adequacy of the model was verified using analysis of variance. The experiments were conducted on aluminum Al 6063 by high-speed steel end mill cutter, and acceleration amplitude was measured using FFT analyzer. The direct and interaction effect of the machining parameter with vibration amplitude were analyzed, which helped to select process parameter in order to reduce vibration, which ensures quality of milling.  相似文献   

3.
针对不同走刀路径下的复杂曲面加工过程进行球头铣刀铣削Cr12MoV加工复杂曲面研究,分析不同走刀路径下铣削力和刀具磨损的变化趋势。试验结果表明:通过对比分析直线铣削和曲面铣削过程中的最大未变形切屑厚度,可以得出单周期内曲面铣削的力大于直线铣削过程的力,铣削相同铣削层时环形走刀测得的切削力普遍大于往复走刀测得的切削力;以最小刀具磨损为优化目标,运用方差分析法分析得出不同走刀路径的影响刀具磨损的主次因素,同时利用残差分析方法建立球头铣刀加工复杂曲面刀具磨损预测模型,并通过试验进行验证。  相似文献   

4.
Various cutter strategies have been developed during milling freeform surface. Proper selection of the cutter path orientation is extremely important in ensuring high productivity rate, meeting the better quality level, and longer tool life. In this work, finish milling of TC17 alloy has been done using carbide ball nose end mill on an incline workpiece angle of 30°. The influence of cutter path orientation was examined, and the cutting forces, tool life, tool wear, and surface integrity were evaluated. The results indicate that horizontal downward orientation produced the highest cutting forces. Vertical downward orientation provided the best tool life with cut lengths 90–380 % longer than for all other orientations. Flank wear and adhesion wear were the primary wear form and wear mechanisms, respectively. The best surface finish was achieved using an upward orientation, in particular, the vertical upward orientation. Compressive residual stresses were detected on all the machined surfaces, and vertical upward orientation provided the minimum surface compressive residual stress. In the aspect of tool wear reduction and improvement of surface integrity, horizontal upward cutter path orientation was a suitable choice, which provided a tool life of 270 m, surface roughness (R a ) of 1.46 μm, and surface compressive residual stress of ?300 MPa.  相似文献   

5.
The present paper deals with experimental investigations carried out for machinability study of hardened steel and to obtain optimum process parameters by grey relational analysis. An orthogonal array, grey relations, grey relational coefficients and analysis of variance (ANOVA) are applied to study the performance characteristics of machining process parameters such as cutting speed, feed, depth of cut and width of cut with consideration of multiple responses, i.e. volume of material removed, surface finish, tool wear and tool life. Tool wear patterns are measured using optical microscope and analysed using scanning electron microscope and X-ray diffraction technique. Chipping and adhesion are main causes of wear. The optimum process parameters are calculated for rough machining and finish machining using grey theory and results are compared with ANOVA.  相似文献   

6.
The commercial availability of PCBN tools has created the possibility for great improvements in the area of machining hardened steels. Roughing and finishing cuts can be carried out to achieve a surface finish as good as that obtained by grinding. Through this procedure, fabrication time can be greatly reduced and quality increased. This work presents a study of the wear of PCBN and cemented carbide tools when end milling hardened steels at low/medium cutting speeds. The experiments were carried out using a 12.0 mm diameter end milling tool with an indexable insert tipped with PCBN. Removal rate was 384 mm 3 min −1 . Carbide inserts were also tested under the same cutting conditions. The tests were carried out in the dry condition. Three different hardened steels were cut and the wear mechanism was investigated using a scanning electronic microscope (SEM). The minimal wear mechanism found was a combination of adhesion and abrasion. The wear occurred predominantly on the flank face, although some indications of crater wear were also detected. The amount of wear was significantly smaller for PCBN tools than for cemented carbide tools.  相似文献   

7.
PCBN刀具和硬质合金刀具铣削GCr15的对比试验研究   总被引:1,自引:1,他引:0  
在干式切削的条件下,采用单因素试验法,比较分析了PCBN刀具和硬质合金刀具铣削轴承钢GCr15的差异。结果表明:PCBN刀具在铣削过程中不产生积屑瘤,可获得更好的表面粗糙度,后刀面的磨损较小。  相似文献   

8.
利用单因素试验法,在高温合金(GH4169)的铣削加工中,分析了硬质合金立铣刀螺旋角对切削力、已加工表面粗糙度、刀具寿命和失效形式的影响。掌握了立铣刀螺旋角对切削性能的影响,优选出在高温合金精铣加工中较为合理的刀具螺旋角。  相似文献   

9.
Milling cutters were evaluated by tool wear, cutting force and vibration. Surface integrity of grinding and milling were investigated by comparing residual stress distributions, metallurgical structure, hardened layer depth and surface roughness. And influence of cutting tool wear on surface integrity was investigated. Experimentations revealed that the preferable surface integrity would be obtained if the proper milling cutter as well as a small wear criterion were adopted to avoid the advent of tempered martensite. The research results pointed out the feasibility of taking milling as the finish machining process instead of grinding in machining hardened steel with high efficiency.  相似文献   

10.
Milling cutters were evaluated by tool wear, cutting force and vibration. Surface integrity of grinding and milling were investigated by comparing residual stress distributions, metallurgical structure, hardened layer depth and surface roughness. And influence of cutting tool wear on surface integrity was investigated. Experimentations revealed that the preferable surface integrity would be obtained if the proper milling cutter as well as a small wear criterion were adopted to avoid the advent of tempered martensite. The research results pointed out the feasibility of taking milling as the finish machining process instead of grinding in machining hardened steel with high efficiency.  相似文献   

11.
余摆线铣削因切削力小、表面质量和生产率高,而广泛应用于高速加工中。球头铣刀因适应性好,且姿态可灵活调整,而成为多轴加工复杂表面的常用刀具。然而,球头铣刀齿形复杂,余摆线铣削的运动轨迹方向不断变化,工件的材料去除和表面形貌的创成过程异常复杂,传统方法建模困难。提出一种球头铣刀余摆线加工表面形貌的数值仿真方法,根据齐次坐标矩阵变换原理建立刀齿的运动轨迹方程,通过改进Z-MAP算法完成了加工表面形貌的仿真。该算法通过建立刀齿微元的随动矩形包围圈和瞬时扫掠四边形,使用角度累加法快速地获取刀齿微元在单位时间步长内扫掠到的工件网格点,根据多元函数的泰勒公式,用线性插值的方法求出该网格点的高度坐标。仿真结果表明球头铣刀余摆线铣削的表面形貌整体上优于普通直线铣削。试验结果表明,在垂直和倾斜加工条件下,球头铣刀余摆线铣削获得的表面形貌与仿真结果具有较高的一致性,说明所提出的方法可以预测球头铣刀余摆线的加工表面形貌。  相似文献   

12.
整体叶轮鼓形刀五坐标数控加工刀位轨迹生成   总被引:1,自引:0,他引:1  
研究了用鼓形刀具进行整体叶轮五坐标数控加工的编程技术.根据鼓形刀具的几何特点,设计了一种无干涉的鼓形刀刀位轨迹生成算法,开发出整体叶轮五坐标数控加工程序生成功能模块.通过算例,证明设计的鼓形刀无干涉刀位轨迹算法是切实可行的,与球头刀相比,对于同样的残留高度,可以增大加工行距,使刀轨长度变短,可提高整体叶轮数控加工的效率.  相似文献   

13.
Optimization of cutting parameters is valuable in terms of providing high precision and efficient machining. Optimization of machining parameters for milling is an important step to minimize the machining time and cutting force, increase productivity and tool life and obtain better surface finish. In this work a mathematical model has been developed based on both the material behavior and the machine dynamics to determine cutting force for milling operations. The system used for optimization is based on powerful artificial intelligence called genetic algorithms (GA). The machining time is considered as the objective function and constraints are tool life, limits of feed rate, depth of cut, cutting speed, surface roughness, cutting force and amplitude of vibrations while maintaining a constant material removal rate. The result of the work shows how a complex optimization problem is handled by a genetic algorithm and converges very quickly. Experimental end milling tests have been performed on mild steel to measure surface roughness, cutting force using milling tool dynamometer and vibration using a FFT (fast Fourier transform) analyzer for the optimized cutting parameters in a Universal milling machine using an HSS cutter. From the estimated surface roughness value of 0.71 μm, the optimal cutting parameters that have given a maximum material removal rate of 6.0×103 mm3/min with less amplitude of vibration at the work piece support 1.66 μm maximum displacement. The good agreement between the GA cutting forces and measured cutting forces clearly demonstrates the accuracy and effectiveness of the model presented and program developed. The obtained results indicate that the optimized parameters are capable of machining the work piece more efficiently with better surface finish.  相似文献   

14.
In the present work, the performance of cubic boron nitride (CBN) inserts was compared with coated carbide and cryogenically treated coated/uncoated carbide inserts in terms of flank wear, surface roughness, white layer formation, and microhardness variation under dry cutting conditions for finish turning of hardened AISI H11 steel (48–49 HRC). The flank wear of CBN tools was observed to be lower than that of other inserts, but the accumulated machining time for all the four edges of carbide inserts were nearer to or better than the PCBN inserts. Results showed that tool life of carbide inserts decreased at higher cutting speeds. The surface roughness achieved under all cutting conditions for coated-carbide-treated/untreated inserts was comparable with that achieved with CBN inserts and was below 1.6 μm. The white layer formation and microhardness variation is less while turning with cryogenically treated carbide inserts than the CBN and untreated carbide. At low to medium cutting speed and feed, the performance of carbide inserts was comparable with CBN both in terms of tool life and surface integrity.  相似文献   

15.
The purpose of this paper is to provide a reasonable means to approach tool shape optimization of ball end mill for high-speed milling operation. The paper presents a new development of an integrated system for ball end mill design, creation and evaluation that is more flexible and more systematic than the commercially available tool fabrication systems.The study consists of three major contents: (1) 3D-CAD/CAM system development for ball end mill design and creation, (2) fundamental investigations of cutting characteristics with different ball end mills, and (3) improvement of tool life and machining stabilization for high-speed milling by means of new tool shape proposals. These are explained in the following sections, respectively. Through the above developments and investigations, it is evidently found that the developed system shows great validity and possibility to realize tool shape optimization of the ball end mill.  相似文献   

16.
在考虑刀具的瞬时变形和刀具变形的再生反馈对切削厚度的影响的基础上,建立了包含主轴偏心、刀具磨损、刀具振动和工件振动的球头铣刀动力学模型,并通过试验验证了所建立模型的正确性。切削力模型的建立对实现球头铣刀切削力的预报具有重要的现实意义,并为进一步提高表面加工质量奠定了基础。  相似文献   

17.
The results of mathematical modeling and the experimental investigation on the machinability of aluminium (Al6061) silicon carbide particulate (SiCp) metal matrix composite (MMC) during end milling process is analyzed. The machining was difficult to cut the material because of its hardness and wear resistance due to its abrasive nature of reinforcement element. The influence of machining parameters such as spindle speed, feed rate, depth of cut and nose radius on the cutting force has been investigated. The influence of the length of machining on the tool wear and the machining parameters on the surface finish criteria have been determined through the response surface methodology (RSM) prediction model. The prediction model is also used to determine the combined effect of machining parameters on the cutting force, tool wear and surface roughness. The results of the model were compared with the experimental results and found to be good agreement with them. The results of prediction model help in the selection of process parameters to reduce the cutting force, tool wear and surface roughness, which ensures quality of milling processes.  相似文献   

18.
Titanium Alloy is a typical material difficult to be processed for its characteristics of low thermal conductivity, and high chemical activity, which result in tool wear and the poor quality of the machined surface. In order to solve the problems existing in the processing of Titanium Alloy, considering the tool edge, micro-texture is implanted into the cemented carbide ball end milling cutter. The article analyzes the influence law of micro-texture and the tool edge radius of ball end milling cutter on mechanical properties of Titanium Alloy, establishes and verifies a mechanical predictive model of milling Titanium Alloy with ball end milling cutter surface based on the effect of micro-texture and the tool edge. Finally, with regard to the minimum cutting force as the target, the article uses genetic algorithm to optimize meso-geometrical features parameters of the cemented carbide ball end milling cutter. The article also provides the foundation for efficient and high-quality processing of Titanium Alloy.  相似文献   

19.
高速铣削淬硬模具钢的工艺性与经济性研究   总被引:4,自引:2,他引:4  
高速加工机床及其刀具技术的最新发展使得在模具和零件制造领域实现“以切代磨”成为可能 ,用超硬刀具高速切削淬硬模具钢等难加工材料已得到越来越广泛的应用。由于模具或零件的高速切削加工可免除磨削或抛光等后续工序 ,因此精加工时如何保证工件最终表面质量同时将加工成本控制在可接受范围之内是研究人员关注的重要问题。本文在调查的基础上分析了用于高速铣削淬硬模具钢的整体硬质合金涂层立铣刀的切削性能和经济性 ,并给出了部分应用实例  相似文献   

20.
王岩禄  王锡山 《工具技术》2003,37(11):52-54
对水轮机叶片不锈钢材料的切削性能和刀具磨损特性进行分析 ,介绍了叶片铣刀的开发和刀片的选用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号