首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main object of the present work was to develop an electrical discharge abrasive drilling (EDAD) methodology to remove the re-solidified layer through the grinding induced by a metal matrix composite electrode prior to the re-solidification of molten material. A metal matrix composite (Cu/SiCp) electrode, with an electroless pretreatment of Cu coating on SiCp to enhance bonding status between Cu and SiCp, was made with a rotating device and this was employed to study the EDAD technology. The machinability of the mold steel HPM50 and tungsten carbide P20 was investigated by the combined technologies of EDAD. The machined surfaces of these materials were examined by scanning electron microscopy (SEM) and their surface roughness measured by a profilemeter. From the experimental results, it was found that the EDAD machining efficiency was three to seven times than that of normal EDM operation for mold steel. However, the efficiency improvement is hardly detectable for tungsten carbide. In addition, the surface roughness of both materials could be improved in comparison with that achieved after EDM.  相似文献   

2.
The grinding cost of metal matrix composite materials is more due to low removal rates and high rates of wear of super abrasive wheels. This electrolytic in-process dressing (ELID) technique uses a metal-bonded grinding wheel that is electrolytically dressed during the grinding process for abrasives that protrude continuously from super abrasive wheels. This research carries out ELID grinding using various current duty ratios and conventional grinding of 10% SiCp reinforced 2,124 aluminium composite materials. Normal forces and tangential forces are monitored. Surface roughness of the ground surface, Vickers hardness numbers and metal removal rate (MRR) are measured. The results show that the cutting forces in the ELID grinding are unstable throughout the grinding process due to the breakage of an insulating layer formed on the surface of grinding wheel and are less than conventional grinding forces. A smoother surface can be obtained at high current duty ratio in ELID grinding. The micro-hardness is reduced at high current duty ratio. In ELID, the MRR increases at high current duty ratio. The results of this investigation are presented in this paper.  相似文献   

3.
Monotonic fault progression is an important assumption for a number of prognostic models. This assumption can be violated through human intervention and self‐healing and result in non-monotonic degradation data which not only increases the uncertainty but also may cause model failure. Methods to analyze and handle non-monotonic degradation in repairable systems are practically nonexistent in the literature. In this research, we intend to consider repairable systems in which self‐healing is possible and human interventions are desirable. We presented a novel example of self-healing for fatigue cracks analyzed by acoustic emission. The aim of the present paper is to initiate a new research area on using non-monotonic measures in degradation-based prognostics. However, this research is not a review of trend analysis techniques, and therefore, there are more techniques to be considered or developed in future studies. In effect, trend analysis should be considered as an integral part of prognostics and health management. This study considers trend analysis for three classes of data, (1) prognostic parameters, (2) degradation waveform, and (3) multivariate data. A new form of crest factor is introduced for more effective waveform analysis of non-monotonic data. In addition, two algorithms are introduced to treat non-monotonic trend. The prognostic model used in this research does not produce results without treating non-monotonicity. These kinds of algorithm have promising potential to treat non-monotonicity and deal with arbitrary stationary noise in degradation data.  相似文献   

4.
This paper introduces the composite tool electrodes made of electrical conductive powder-filled polyester resin matrix material, providing promise for the electrical discharge machining (EDM) process. The dendrite-shaped copper powder, graphite powder, and their mixture were used as conductive fillers. Six different types of composite electrodes, namely, plain copper-polyester, pressed copper-polyester, furnaced copper-polyester, plain copper-graphite-polyester, pressed copper-graphite-polyester, and furnaced copper-graphite-polyester were prepared. It is found experimentally that increasing v f improved workpiece material removal rate, tool wear rate, relative wear, and electrical conductivity of electrodes. The pressed copper-polyester electrodes were found to be promising in the ED finishing of workpieces at low machining current settings. The practical applicability of the proposed composite electrodes in the industry was also illustrated.  相似文献   

5.
Aluminium metal matrix composites (MMCs) reinforced with silicon carbide particulate (SiCp) find several applications due to their improved mechanical properties over the conventional metals for a wide variety of aerospace and automotive applications. However, the presence of discontinuously distributed hard ceramic in the MMCs made them as difficult-to-cut materials for conventional machining methods. The wire electrical discharge machining (WEDM), as a widely adopted non-traditional machining method for difficult-to-cut precision components, found an appropriate metal removal process for MMCs to enhance quality of cut within the stipulated cost. While machining the advanced materials like MMCs, a clear understanding into the machining performance of the process for its control variables could make the process uncomplicated and economical. In light of the growing industrial need of making high performance-low cost components, the investigation aimed to explore the machining performance characteristics of SiCp reinforced Al7075 matrix composites (Al7075/SiCp) during WEDM. While conducting the machining experiments, surface roughness, metal removal rate, and wire wear ratio are considered the responses to evaluate the WEDM performance. Response surface methodology is used to develop the empirical models for these WEDM responses. SiC particulate size and volume percentages are considered the process variables along with pulse-on time, pulse-off time, and wire tension. Analysis of variance (ANOVA) is used to check the adequacy of the developed models. Since the machining responses are conflicting in nature, the problem is formulated as a multi-objective optimization problem and is solved using the Non-dominated Sorting Genetic Algorithm-II to obtain the set of Pareto-optimal solutions. The derived optimal process responses are confirmed by the experimental validation tests, and the results are analyzed by SEM.  相似文献   

6.
7.
Machinability aspect is of considerable importance for efficient process planning in manufacturing. Machinability of an engineering material may be evaluated in terms of the process output variables like material removal rate, processed surface finish, cutting forces, tool life, specific power consumption, etc. In this paper, graph theoretic approach (GTA) is proposed to evaluate the machinability of tungsten carbide composite. Material removal rate is considered as a machinability attribute of tungsten carbide to evaluate the effect of several factors and their subfactors. Factors affecting the machinability and their interactions are analyzed by developing a mathematical model using digraph and matrix method. Permanent function or machinability index is obtained from the matrix model developed from the digraphs. This index value helps in quantifying the influence of considered factors on machinability. In the present illustration, factors affecting machinability of tungsten carbide are grouped into five broad factors namely work material, machine tool, tool electrode, cutting conditions, and geometry to be machined. GTA methodology reveals that the machine tool has highest index value. Therefore, it is the most influencing factor affecting machinability.  相似文献   

8.
The cost of a part manufactured by electrical dischargeEDM machining (EDM) is mainly determined by electrode cost. The production of electrodes by conventional machining processes is complex, time consuming, and can account for over 50 % of the total EDM process costs. The emerging additive manufacturing (AM) technologies provide the possibility of direct fabrication of EDM electrodes. Selective laser sintering (SLS) is an alternative AM technique because it has the possibility to directly produce functional components, reducing the tool-room lead time and total EDM costs. The main difficulty of manufacturing an EDM electrode using SLS is the selection of an appropriate material, once both processes require different material properties. The current work focused on the investigation of appropriate materials that fulfill EDM and SLS process demands. Three new metal-matrix materials composed of Mo–CuNi, TiB2–CuNi, and ZrB2–CuNi were developed and characterized. Electrodes under adequate SLS conditions were manufactured through a systematic methodology. EDM experiments using different discharge energies were carried out, and the performance evaluated in terms of material removal rate and volumetric relative wear. The results showed that the powder systems composed of Mo–CuNi, TiB2–CuNi, and ZrB2–CuNi revealed to be successfully processed by SLS, and the EDM experiments demonstrated that the new composite electrodes are promising materials. The work also suggests important topics for future research work on this field.  相似文献   

9.
The newly engineered metal matrix nanocomposite (MMNC) of Al 7075 reinforced with 0.5 wt% SiC nanoparticles was prepared by ultrasonic cavitation method. The high resolution scanning electron micrograph shows uniform distribution and good dispersion of the SiC nanoparticles within the aluminum metal matrix. Electrical discharge machining was employed to machine MMNC with copper electrode by adopting face-centered central composite design of response surface methodology. Analysis of variance was applied to investigate the influence of process parameters and their interactions. Further, a mathematical model has been formulated in order to estimate the machining characteristics.  相似文献   

10.
Evans  Phaneuf  & Boyd 《Journal of microscopy》1999,196(2):146-154
It is difficult to study effectively microstructural damage in metal matrix composites (MMCs) due to artefacts arising from traditional metallographic sample preparation techniques. The sectioning and imaging capabilities of the focused ion beam (FIB) microscope provide an excellent method for studying damage accumulation in MMCs.
The capabilities of the FIB system have been used to carry out a study of damage evolution in a powder-processed/hot-extruded Al2080/SiCp MMC. Microvoid damage is found to be preserved accurately during FIB sectioning, allowing measurements of the fraction of decohered particles and the void area fraction. These microscopic damage measurements are correlated with the macroscopic damage parameter, D , as determined by density measurements.
Using transmission electron microscopy, the evolution of dislocation structures at the SiC–matrix interfaces has been examined. A previously unreported decohesion mechanism has been observed.  相似文献   

11.
Electrical Discharge Machining (EDM) is very popular for machining conductive metal matrix composites (MMCs) because the hardness rendered by the ceramic reinforcements to these composites causes very high tool wear and cutting forces in conventional machining processes. EDM requires selection of a number of parameters for desirable results. Inappropriate parameter selection can lead to high overcuts, tool wear, excessive roughness, and arcing during machining and adversely affect machining quality. Arcing leads to short circuit gap conditions resulting in large energy discharges and uncontrolled machining. Arcing is a detrimental phenomenon in EDM which causes spoiling of workpiece and tool electrode and tends to damage the power supply of EDM machine. Parameter combinations that lead to arcing during machining have to be identified and avoided for every tool, work material, and dielectric combination. Proper selection of parameter combinations to avoid arcing is essential in EDM. In the work, experiments were conducted using L27 design of experiment to determine the parameter settings which cause arcing in EDM machining of TiB2p reinforced ferrous matrix composite. Important EDM process parameters were selected in roughing, intermediate, and finishing range so as to study the occurrence of arcing. Using the experimental data, an artificial neural network (ANN) model was developed as a tool to predict the possibility of arcing for selected parameter combinations. This model can help avoid the parameter combinations which can lead to arcing during actual machining using EDM. The ANN model was validated by conducting validation experiments to ensure that it can work accurately as a predicting tool to know beforehand whether the selected parameters will lead to arcing during actual machining using EDM. Validation results show that the ANN model developed can predict arcing possibility accurately when the depth of machining is included as input variable for the model.  相似文献   

12.
介绍了工件坐标系在电火花加工中的应用。通过灵活运用工件坐标系,可以简化操作界面和程序,并能准确找正。  相似文献   

13.
通过试验研究硬质合金的电火花加工中脉冲宽度、峰值电流等电参数对加工速度、电极损耗、加工表面粗糙度的影响规律,得出结论:脉冲宽度和峰值电流必须在一个合适的范围内才能得到较好的加工效果。  相似文献   

14.
Machining of hybrid metal matrix composite is difficult as the particulates are abrasive in nature and they behave like a cutting edge during machining resulting in quick tool wear and induces vibration. An attempt was made in this experimental study to evaluate the machining characteristics of hybrid metal matrix composite, and a mathematical model was developed to predict the responses, namely surface finish, intensity of vibration and work-tool interface temperature for known cutting condition while machining was performed in computer numerical control lathe. Design of experiments approach was used to conduct the trials; response surface methodology was employed to formulate a mathematical model. The experimental study inferred that the vibration in V x, V y, and V z were 41.59, 45.17, and 26.45 m/s2, respectively, and surface finish R a, R q, and R z were 1.76, 3.01, and 11.94 μm, respectively, with work-tool interface temperature ‘T’ of 51.74 °C for optimal machining parameters, say, cutting speed at 175 m/min, depth of cut at 0.25 mm and feed rate at 0.1 mm/rev during machining. Experimental results were in close conformity with response surface method overlay plot for responses.  相似文献   

15.
《Wear》2002,252(3-4):189-198
Due to the complexity of friction phenomena in polymer matrix composites, the friction mechanisms have not been fully understood. This paper concentrates on the characterization of friction layer formation and correlation of friction layer properties to the performance of a recently developed family of polymer matrix composites. It was demonstrated that character of the friction layer determines the friction performance of the investigated composite material. Structure and chemical composition of the friction layer generated on the friction surface significantly differs from the bulk. Mechano-chemical interaction occurring in the friction process is compared to a “non-friction” situation where an “equivalent” apparent temperature and compressive loading, respectively were applied to the same material. No simple relationship exists between composition of the friction layer and bulk material formulation. Phase stability and kinetics of interactions for “friction” and “equivalent non-friction” loading conditions significantly differ.  相似文献   

16.
In process planning of wire electrical discharge machining (WEDM), determination of appropriate machining conditions is likely to face problems in many ways. In addition to the construction of the relationship between machining parameters and machining characteristics, optimization search technique, a large number of experiments must be conducted repeatedly to renew parameters for different workpiece materials. The concept of specific discharge energy (SDE) was employed in this paper to represent the WEDM property of workpiece materials as one of the machining parameters. Two kinds of materials with distinctive SDE values, i.e., higher and lower, respectively, were selected for our experiments. The experimental data obtained were used, and a neural network that can accurately predict the relationship between machining parameters and machining characteristics was constructed. It was found that the predicted error was less than 7 %. The optimization technique of genetic algorithms was employed, and the optimal combination of machining parameters that meet the required machining characteristics for different workpiece materials was obtained. The system proposed in this study is both user-friendly and practical. It can save considerable time and cost during the construction of the database for the expert system of process planning.  相似文献   

17.
针对目前介电弹性体材料的相关研究进展及存在的问题,在分析介电弹性体特性的基础上,根据其不同种类,研究了硅橡胶、聚氨酯、丙烯酸等材料及复合材料的性质及制备方法;根据介电弹性体的不同用途,分析了近些年其在发电、仿生学、生物医学、光学器件、微系统、航天航空方面的具体应用及其未来发展趋势,并总结了介电弹性体在未来应用中存在薄膜制备、柔性电极材料覆盖绝缘、偏置高压电源限制、降低能量损耗和提高机电转换效率等相关问题,针对这些问题提出了相应的建议及未来发展思路。研究结果表明,介电弹性体具有很广阔的应用前景,但是目前还存在很多技术难点,在弹性体基体材料构成、柔性电极材料优化、自偏置发电、效率优化等方面还要进行更为深入的研究。  相似文献   

18.
本文介绍了刀具半径补偿在电火花线切割中的应用,通过B刀补和C刀补优缺点的比较,重点分析了C功能刀补在慢丝机数控系统中的实现,最后给出了C刀补的图形仿真。  相似文献   

19.
Plastic deformation behavior of a stainless-steel/Sn−Bi composite was examined using transverse compression tests on rectangular specimens under plane strain loadings. Based on the anisotropic yield criterion proposed by Hill, a theoretical analysis on the relationship between the yield strength of the matrix material and the yield strength of the composite was developed and compared to experimental results. Experiments were carried out to investigate the effects of the forming parameters such as yield strength of the matrix material, fiber packing patterns, fiber volume fraction, and lubrication of the compression platens, on the plastic deformation behavior of the metal matrix composite. Failure modes of the composite included shear band formation and eye formation at the fiber-matrix interface. Low deformability in the transverse directions was found for the metal matrix composite specimen. The theoretical and experimental results on the effects of the forming parameters provide basic information for further research on the transverse compression of metal matrix composite materials.  相似文献   

20.
Four micro-holes were made using micro-EDM on rake face of the cemented carbide (WC/TiC/Co) tools. MoS2, CaF2, and graphite solid lubricants were respectively embedded into the four micro-holes to form self-lubricated tools (SLT-1, SLT-2, and SLT-3). Dry machining tests on hardened steel were carried out with these self-lubricated tools and conventional tools (SLT-4). The cutting forces, average friction coefficient between tool and chip, and tool wear were measured and compared. It was shown that the cutting forces and tool wear of self-lubricated tools were clearly reduced compared with those of the SLT-4 conventional tool. The SLT-1 self-lubricated tool embedded with MoS2 just exhibited lower friction coefficient between tool and chip in cutting speed of less than 100?m/min; the SLT-2 self-lubricated tool embedded with CaF2 possessed lower friction coefficient in cutting speed of more than 100?m/min; and the SLT-3 self-lubricated tool embedded with graphite accomplished good lubricating behaviors steadily under the test conditions. It is indicated that cemented carbide inserts with four micro-holes on rake face embedded with appropriate solid lubricants on rake face is an effective way to reduce cutting forces and rake wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号