首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Present investigation applied the designs of experiments and grey relational analysis (GRA) approach to optimise parameters for electrical discharge machining process of 6061Al/Al2O3p/20P aluminium metal matrix composites. Planning of experiments was based on an L18 (2^1?×?3^5) orthogonal array to determine an optimal setting. The process parameters included one noise factor, aspect ratio having two levels and five control factors, viz. pulse current, pulse ON time, duty cycle, gap voltage and tool electrode lift time with three levels each. The material removal rate, tool wear rate and surface roughness were selected as the evaluation criteria, in this study. Optimal combination of process parameters is determined by the grey relational grade (GRG) obtained through GRA for multiple performance characteristics. Analysis of variance for the GRG is also implemented. It is shown that through GRA, the optimization of the multiple performance characteristics can be greatly simplified.  相似文献   

2.
In this investigation, a hybrid optimization approach is used for the estimation of minimal surface integrity of surface created in electrical discharge machining (EDM). A new combination, response surface methodology coupled with the grey relational analysis method has been proposed and used to optimize the machining parameters of EDM. The significant input parameters such as pulse current (Ip), pulse duration (Ton), duty cycle (Tau) and discharge voltage (V ) are considered, and white layer thickness, surface roughness, and surface crack density have been considered as responses for this study. Thirty experiments were conducted on American Iron and Steel Institute (AISI) D2 steel work piece materials based on central composite design. The optimum conditions of the machining parameters were obtained from the grey relational grade. Analysis of variance is used to find the percentage contribution of the input parameters and found that Tau was the most influencing parameter followed by Ton and Ip in EDM of D2 steel. The $R^2$ value for the grey relational grade model was 0.918. These results provide useful information about how to control the responses and ensure the high-quality surfaces-quality surfaces. This method is simple with easy operability. The assessment outcome provides a scientific reference to obtain the minimal condition of surface integrity, and they were found to be a pulse current of 1 A, a pulse duration of 50 μs, a duty cycle of 80 %, and discharge voltage 40 V.  相似文献   

3.
This paper presents an experimental investigation on cryogenic cooling of liquid nitrogen (LN2) copper electrode in the electrical discharge machining (EDM) process. The optimization of the EDM process parameters, such as the electrode environment (conventional electrode and cryogenically cooled electrode in EDM), discharge current, pulse on time, gap voltage on material removal rate, electrode wear, and surface roughness on machining of AlSiCp metal matrix composite using multiple performance characteristics on grey relational analysis was investigated. The L18 orthogonal array was utilized to examine the process parameters, and the optimal levels of the process parameters were identified through grey relational analysis. Experimental data were analyzed through analysis of variance. Scanning electron microscopy analysis was conducted to study the characteristics of the machined surface.  相似文献   

4.
An experimental research study intended for the application of a planetary electrical discharge machining (EDM) process with copper-tungsten (Cu-W) electrodes in the surface micro-finishing of die helical thread cavities made with AISI H13 tool steel full-hardened at 53 HRC is presented. To establish the EDM parameters’ effect on various surface finishing aspects and metallurgical transformations, three tool electrode Cu-W compositions are selected, and operating parameters such as the open-circuit voltage (U 0), the discharge voltage (u e), the peak discharge current (î e), the pulse-on duration (t i), the duty factor (τ) and the dielectric flushing pressure (p in), are correlated. The researched machining characteristics are the material removal rate (MRR—V w), the relative tool wear ratio (TWR—?), the workpiece surface roughness (SR—Ra), the average white layer thickness (WLT—e wl) and the heat-affected zone (HAZ—Z ha). An empirical relation between the surface roughness (SR—Ra) and the energy per discharge (W e) has been determined. It is analysed that copper-tungsten electrodes with negative polarity are appropriate for planetary EDM die steel surface micro-finishing, allowing the attaining of good geometry accuracy and sharp details. For die steel precision EDM, the relative wear ratio optimum condition and minor surface roughness takes place at a gap voltage of 280 V, discharge current of 0.5–1.0 A, pulse-on duration of 0.8 μs, duty factor of 50%, dielectric flushing pressure of 40 kPa and copper tungsten (Cu20W80) as the tool electrode material with negative polarity. The copper-tungsten electrode’s low material removal rate and low tool-wear ratio allows the machining of EDM cavity surfaces with an accurate geometry and a “mirror-like” surface micro-finishing. A planetary EDM application to manufacture helical thread cavities in steel dies for polymer injection is presented. Conclusions are appointed for the planetary EDM of helical thread cavities with Cu-W electrodes validating the accomplishment as a novel technique for manufacturing processes.  相似文献   

5.
Convention Taguchi method deals with only single response optimization problems. Since the electrical discharge machining process involved with many response parameters, Taguchi method alone cannot help to obtain optimal process parameters in such process. In the present work, an endeavor has been made to derive optimal combination of electrical process parameters in electro erosion process using grey relational analysis with Taguchi method. This multi response optimization of the electrical discharge machining process has been conducted with AISI 202 stainless steel with different tool electrodes such as copper, brass and tungsten carbide. Gap voltage, discharge current and duty factor have been used as electrical excitation parameters with different process levels. Taguchi L27 orthogonal table has been assigned for conducting experiments with the consideration of interactions among the input electrical process parameters. Material removal rate, electrode wear rate and surface roughness have been selected as response parameters. From the experimental results, it has been found that the electrical conductivity of the tool electrode has the most influencing nature on the machining characteristics in EDM process. The optimal combination of the input process parameters has been obtained using Taguchi-grey relational analysis.  相似文献   

6.
This paper investigates an optimisation design of the various machining parameters for the electrical discharge machining (EDM) processes on AISI D2 tool steel using a hybrid optimisation method. A new combination of response surface methodology (RSM) and grey relational analysis coupled with principal component analysis (PCA) has been proposed to evaluate and estimate the effect of machining parameters on the responses. The major responses selected for this analysis are material removal rate, tool wear rate and radial overcut or gap, and the corresponding machining parameters considered for this study were pulse current (Ip), pulse duration (Ton), duty cycle (Tau) and discharge voltage (V). Thirty experiments were conducted on AISI D2 steel workpiece materials based on a face-centred central composite design. The experimental results obtained were used in grey relational analysis, and the weights of the responses were determined by the PCA and further evaluated using RSM. The results indicate that the grey relational grade (GRG) was significantly affected by the machining parameters considered and some of their interactions. The $R^2$ value for the GRG model was found to be 0.83, and the optimal parameter setting was determined for the grey relational grades. The analysis of variance results reveal that Tau is the most influencing parameter having 28.57 of percentage contribution followed by Ip, V and Ton with 11.52, 5.89 and 5.83 %, respectively. The interaction of the parameters contributes 31.19 % of percentage contribution. These results provide useful information on how to control the machining parameters and thereby responses and ensure high productivity and accuracy of the EDMed component. This method is simple with easy operability, and the results have also been verified by running confirmation tests.  相似文献   

7.
In this paper, the use of the grey relational analysis based on an orthogonal array and fuzzy-based Taguchi method for optimising the multi-response process is reported. Both the grey relational analysis method without using the S/N ratio and fuzzy logic analysis are used in an orthogonal array table in carrying out experiments for solving the multiple responses in the electrical discharge machining (EDM) process. Experimental results have shown that both approaches can optimise the machining parameters (pulse on time, duty factor, and discharge current) with considerations of the multiple responses (electrode wear ratio, material removal rate, and surface roughness) effectively. It seems that the grey relational analysis is more straightforward than the fuzzy-based Taguchi method for optimising the EDM process with multiple process responses.  相似文献   

8.
Electric discharge machining (EDM) has achieved remarkable success in the manufacture of conductive ceramic materials for the modern metal industry. Mathematical models are proposed for the modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic which are developed using the response surface methodology (RSM) to explain the influences of four machining parameters (the discharge current, pulse on time, duty factor and open discharge voltage) on the performance characteristics of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The experiment plan adopts the centered central composite design (CCD). The separable influence of individual machining parameters and the interaction between these parameters are also investigated by using analysis of variance (ANOVA). This study highlights the development of mathematical models for investigating the influences of machining parameters on performance characteristics and the proposed mathematical models in this study have proven to fit and predict values of performance characteristics close to those readings recorded experimentally with a 95% confidence interval. Results show that the main two significant factors on the value of the material removal rate (MRR) are the discharge current and the duty factor. The discharge current and the pulse on time also have statistical significance on both the value of the electrode wear ratio (EWR) and the surface roughness (SR).  相似文献   

9.
Electric discharge machining (EDM) is a highly promising machining process of ceramics. This research is an out of the paradigm investigation of EDM on Si3N4-TiN with Copper electrode. Ceramics are used for extrusion dies and bearing balls and they are more efficient, effective and even have longer life than conventional metal alloys. Owing to high hardness of ceramic composites, they are almost impossible to be machined by conventional machining as it entirely depends on relative hardness of tool with work piece. Whereas EDM offers easy machinability combined with exceptional surface finish. Input parameters of paramount significance such as current (I), pulse on (Pon) and off time (Poff), Dielectric pressure (DP) and gap voltage (SV) are studied using L25 orthogonal array. With help of mean effective plots the relationship of output parameters like Material removal rate (MRR), Tool wear rate (TWR), Surface roughness (Ra), Radial overcut (ROC), Taper angle (α), Circularity (CIR), Cylindricity (CYL) and Perpendicularity (PER) with the considered input parameters and their individual influence were investigated. The significant machining parameters were obtained by Analysis of variance (ANOVA) based on Grey relational analysis (GRA) and value of regression coefficient was determined for each model. The results were further evaluated by using confirmatory experiment which illustrated that spark eroding process could effectively be improved.  相似文献   

10.
Electro-discharge machining (EDM) is an enormously used nonconventional process for removing material in die making, aerospace, and automobile industries. It consists of limitations like poor volumetric material removal rate (MRR) and reduced surface quality. Powder mixed EDM (PMEDM) is a new development in EDM to enhance its machining capabilities. The present work investigates the effect of powder concentration (Cp), peak current (Ip), pulse on time (Ton), duty cycle (DC) and gap voltage (Vg) on MRR, tool wear rate (TWR), electrode wear ratio (EWR), and surface roughness (SR) simultaneously for H-11 die steel using SiC powder. Taguchi's L27 orthogonal array has been used to conduct the experiments. Multiobjective optimization using grey relational analysis (GRA) and technique for order of preference by similarity to ideal solution (TOPSIS) has been used to maximize the MRR and minimize the TWR, EWR, and SR and determine the optimal set of process parameters. Analysis of variance (ANOVA) has been performed to understand the significance of each process parameter. Results were verified by conducting confirmatory tests. GRA and TOPSIS exhibit an improvement of 0.1843 and 0.14308 in the preference values, respectively. Microstructure analysis has been done using scanning electron microscope (SEM) for the optimum set of parameters.  相似文献   

11.
为了获得较高的加工质量和加工效率,在对加工时间、电极蚀损量、回退次数和表面粗糙度等指标进行综合分析的基础上,对电极材料、加工电压、峰值电流、脉冲宽度、脉冲间隔、正常进给速度以及快进速度等工艺参数进行了分析和优化.采用电火花刻槽机为实验工具进行正交试验,对正交试验的结果进行了直观分析和灰关联分析.对灰关联度进行F检验后,获得了显著的影响因素,最终遴选出最优加工参数.验证试验表明,灰关联分析法能简化复合工艺指标的优化选择,具有很好的应用效果.  相似文献   

12.
Today the use of high-strength carbon fiber-reinforced plastics (CFRP) composite as a material for many engineering applications is showing an increasing demand in the industry. These composites are replacing the traditional use of steel because they offer many advantages such as very light weight, high strength, and high stiffness associated with good corrosion-resistant properties. Unfortunately, there is little technological knowledge on the electrical discharge machining (EDM) process of high-strength composite materials, especially about the CFRP. In this work, a study has made into the possibility of using EDM process as a means of machining CFRP composite. Various cutting conditions such as peak current, pulse-on time, pulse-off time and open-circuit voltage were selected to perform electrical discharge machining. The effect of electrode rotation was also studied. Optimum cutting conditions and machine settings for EDM were chosen for machining CFRP composites.  相似文献   

13.
Ceramic matrix composites (CMC) are considered the next generation of advanced materials used in space and aviation due to their high-temperature strength, creep resistance, chemical resistance, low porosity, and low density. However, these materials are difficult to process owing to the large cutting force and high cost on tool consumption. electrical discharge machining (EDM), featured by the negligible machining force and acceptable tooling cost, is a potential nontraditional machining technique for CMC. In this paper, EDM was used to process a new class of advanced CMC, that is, those with continuous ceramic fiber reinforcements. The challenge is its low material removal rate (MRR) due to the low workpiece conductivity and debris evacuation efficiency. Electrode vibration and dielectric deep flushing were used to promote debris evacuation, and an increase of MRR and surface quality without sacrificing tool wear ratio was observed. Gap voltage, peak current, pulse duration, and duty ratio were studied using design of experiments for deeper understanding of the process. The effect of these parameters was investigated, and an analysis of variance was conducted. The optimal condition was also predicted and experimentally validated. It was found that a high gap voltage or low duty ratio leads to a high machining rate due to improved debris evacuation efficiency. The material removal mechanism was found to be cracking due to thermal expansion of the matrix and breakage of the nonconductive fibers.  相似文献   

14.
Being a difficult-to-cut material, titanium alloy suffers poor machinability for most cutting processes, especially the drilling of micro-holes using traditional machining methods. Although electrical discharge machining (EDM) is suitable for machining titanium alloys, selection of machining parameters for higher machining rate and accuracy is a challenging task in machining micro-holes. The present research attempts to optimize micro-EDM process parameters for machining Ti-6Al-4V super alloy. To verify the optimal micro-EDM process parameters settings, metal removal rate (MRR), tool-wear rate (TWR), over cut (OC) and taper were chosen as observed performance criteria. In addition, four independent parameters such as peak current, pulse-on time, flushing pressure, and duty ratio were adopted for evaluation by the Taguchi method. From the ANOVA and S/N ratio graph, the significant process parameters and the optimal combination level of machining parameters were obtained. It is seen that machining performances are affected mostly by the peak current and pulse-on time during micro-electro-discharge machining of titanium alloy. Mathematical models have been developed to establish the relationship between various significant process parameters and micro-EDM performance criteria. In-depth studies have also been made to examine the influence of various process parameters on the white layer and surface topography through SEM micrographs of machined micro-hole.  相似文献   

15.
Wire electrical discharge machining (WEDM) is a well known process for generating intricate and complex geometries in hard metal alloys and metal matrix composites with high precision. In present work, intricate machining of WC-5.3%Co composite on WEDM has been reported. Taguchi’s design of experiment has been utilised to investigate the process parameters for four machining characteristics namely material removal rate, surface roughness, angular error and radial overcut. In order to optimize the four machining characteristics simultaneously, grey relational analysis (GRA) coupled with entropy measurement method has been employed. Through GRA, grey relational grade has been computed as a performance index for predicting the optimal parameters setting for multi machining characteristics. Using Analysis of Variance (ANOVA) on grey relational grade, significant parameters affecting the multi-machining characteristics has been determined. Confirmatory results prove the potential of present approach.  相似文献   

16.
This work developed a novel process of magnetic-force-assisted electrical discharge machining (EDM) and conducted an experimental investigation to optimize the machining parameters associated with multiple performance characteristics using gray relational analysis. The main machining parameters such as machining polarity (P), peak current (I P), pulse duration (τ P), high-voltage auxiliary current (I H), no-load voltage (V), and servo reference voltage (S V) were selected to explore the effects of multiple performance characteristics on the material removal rate, electrode wear rate, and surface roughness. The experiments were conducted according to an orthogonal array L18 based on Taguchi method, and the significant process parameters that affected the multiple performance characteristics of magnetic-force-assisted EDM were also determined form the analysis of variance. Moreover, the optimal combination levels of machining parameters were also determined from the response graph and then verified experimentally. The multiple performance characteristics of the magnetic-force-assisted EDM were improved, and the EDM technique with high efficiency, high precision, and high-quality surface were established to meet the demand of modern industrial applications.  相似文献   

17.
In this paper, parameter optimization of the electrical discharge machining process to Ti–6Al–4V alloy considering multiple performance characteristics using the Taguchi method and grey relational analysis is reported. Performance characteristics including the electrode wear ratio, material removal rate and surface roughness are chosen to evaluate the machining effects. The process parameters selected in this study are discharge current, open voltage, pulse duration and duty factor. Experiments based on the appropriate orthogonal array are conducted first. The normalised experimental results of the performance characteristics are then introduced to calculate the coefficient and grades according to grey relational analysis. The optimised process parameters simultaneously leading to a lower electrode wear ratio, higher material removal rate and better surface roughness are then verified through a confirmation experiment. The validation experiments show an improved electrode wear ratio of 15%, material removal rate of 12% and surface roughness of 19% when the Taguchi method and grey relational analysis are used.  相似文献   

18.
The near-dry wire-cut electrical discharge machining (WEDM) process is an environment-friendly manufacturing process, in which there is no harmful effect to the operators. The authors focus on the non-polluting ways to cut the materials and to meet the technical requirements like high material removal rate (MRR) and low surface roughness (Ra). In the near-dry WEDM, the finite discrete periodic series sparks between the wire electrode and conducting work material separated by minimum quantity of deionized water mixed with compressed air (air-mist) as a dielectric medium. In the present research, parametric analysis of the process has been performed with the molybdenum wire tool and high speed steel (HSS-M2) work piece. Experiments have been performed using air-mist as the dielectric medium to study the impact of gap voltage, pulse-on time, pulse-off time, air-mist pressure and discharge current on the MRR and Ra using the mixed orthogonal (L18) array-Taguchi method. Taguchi based analysis of variance test was performed to identify the significant parameters. The gap voltage, pulse-on time, discharge current and air-mist pressure were found to have momentous effects on MRR and Ra. The best regression models for MRR and Ra have been developed by regression analysis. The optimal rough and finish cutting parameters have been predicted by Pareto-front using the multi-objective evolutionary algorithm (MOEA).  相似文献   

19.
The effects of electrical discharge machining (EDM) parameters on drilled-hole quality such as taper and surface finish are evaluated. Microwave-sintered magnesium nano composites (reinforced with 0.8 and 1.2 wt.% of nano alumina) are used as work materials. Experiments were conducted using Taguchi methodology to ascertain the effects of EDM process parameter. The process parameters such as pulse-on time, pulse-off time, voltage gap, and servo speed were optimized to get better surface finish and reduced taper. ANOVA analyses were carried out to identify the significant factors that affect the hole accuracy and the surface roughness. Confirmation tests were performed on the predicted optimum process parameters. Pulse-on time and the servo speed are identified as major response variables. Micro structural changes and the effects of nano particle reinforcement in the drilled hole were studied through SEM micrographs.  相似文献   

20.
This article describes the experimental investigation related to creation of holes in aerospace titanium alloy workpiece using static electrode machining and electrical discharge drilling (EDD) process. Special attachment for holding and rotating the tool electrode was developed and installed on electrical discharge machining (EDM) machine by replacing the original conventional tool holder provided on die sinking EDM. The effect of input parameters such as gap current, pulse on-time, duty factor and RPM of tool electrode on output parameters for average hole circularity (Ca) and average surface roughness (Ra) have been studied. It is observed that the effect of rotating electrode machining has considerable influence on the output parameters over stationary electrode machining. The micro-graphs and photographs of few selected samples were taken by SEM and metallurgical microscope, which also commensurate with the findings of the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号