首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of surface roughness of burnished AISI 1042 steel   总被引:3,自引:0,他引:3  
The aim of this study is to analyse the evolution of surface roughness finished by burnishing. Burnishing is done on a surface that was initially turned or turned and then ground.It has been noted that burnishing an AISI 1042 steel offers the best surface quality when using a small feed value. This finishing process improves roughness and introduces compressive residual stresses in the machined surface. So, it can replace grinding in the machining range of the piece.Also, an analytical model has been defined to determine the Rt factor in relation to the feed. Good correlations have been found between the experimental and analytical results.  相似文献   

2.
滚挤压是一种金属表面微塑性连续变形精加工工艺,现在日益被用作切削加工后的表面强化终处理工艺以获得具有压缩残余应力的高性能低粗糙度的镜面零件表面。本文分析了车削前处理工艺对后续滚挤压加工效果的影响,采用考虑交互作用的L27(313)正交试验设计与分析方法研究了车削滚挤压复合工艺中车削三要素(即车削速度v、车削进给量f、车削深度ap)和滚挤压三要素(即滚挤压速度vb、滚挤压进给量fb、滚挤压深度ab)对滚轮滚挤压45号钢的滚挤压效果(即表面粗糙度Ra、小负荷维氏硬度Hv的影响规律),其中考虑了对滚挤压效果影响最显著的车削进给量f、滚挤压深度ab与滚挤压进给量fb两两之间的交互作用,分析得出了对滚挤压效果影响最显著的主要因素及其规律。从试验的角度发现车削进给量对滚挤压效果有显著影响,与理论分析和预测相吻合。  相似文献   

3.
ABSTRACT

Polymers are utilized in numerous tribological applications because of their excellent characteristics; for example, accommodating shock loading and shaft misalignment. A high surface finish is required to ensure consistently good performance and extended service life of manufactured polymeric components. Burnishing is the best choice as a finishing process for this study due to its ability to increase hardness, fatigue strength, and wear resistance and also introduce compressive residual stress on the burnished workpiece. Due to the complexity and uncertainty of the machining processes, soft computing techniques are preferred for anticipating the performance of the machining processes. In this study, ANFIS as an adaptive neuro-fuzzy inference system was applied to anticipate the workpiece hardness and surface roughness after the roller burnishing process. Five burnishing variables, including burnishing depth, feed rate, speed, roller width, and lubrication mode, were analyzed. A Gauss membership function was used for the training process in this study. The predicted surface roughness and hardness data were compared with experimental results and indicated that the Gauss membership function in ANFIS has satisfying accuracy as high as 97% for surface roughness and 96% for hardness. Furthermore, the generated compressive residual stress on the burnished surface was studied by a 2D finite element model (FEM). The simulated results of residual stress were validated with the experimental results obtained from X-ray diffraction (XRD) tests.  相似文献   

4.
试验研究了ZK60镁合金表面滚压加工中工艺参数对试件表面粗糙度、表面形貌、表面残余应力和表层显微硬度的影响,结果表明滚压力和重复滚压次数对试件的表面粗糙度、表面形貌以及表面残余应力和表层硬度影响程度较大,滚压速度影响较小。对精车ZK60镁合金试件进行滚压加工,试件表面粗糙度R a、R z最大减小了50.3%和48.1%;残余压应力最大可达-54.55 MPa;显微硬度从试件表层到内部基体材料逐渐降低,表层硬度值最大为92.83 HV 0.25,比基体材料硬度提高了15.32%。  相似文献   

5.
Burnishing is a cold working surface treatment process in which plastic deformation of surface irregularities occurs by exerting pressure through a very hard and a very smooth roller or ball on a surface to generate a uniform and work‐hardened surface. This treatment occurs generally after the machining process. In this study, a new combined machining/burnishing tool is designed and is fabricated. This tool allows for generating simultaneously the machining (turning) and the burnishing of the cylindrical surface using a turning machine. First, turned surfaces at different conditions, sketches, finishing and half finishing were performed using only the cutting tool. The evolutions of a surface roughness parameter and the technological time relative to every test condition have been investigated. Second, using the combined machining/burnishing tool at coarse conditions, the evolutions of the surface roughness and the technological time have been also investigated. A comparison among the parameters obtained under different machining conditions and those obtained using the combined machining/burnishing tool has been carried out. Moreover, the analyses of the layers obtained on the combined machined/burnished surface have shown that the burnishing process induces compressive residual stresses on the subsurface treated specimens. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
□ The influence of the milling process on the fatigue behavior of a titanium alloy was investigated. The effect of cutting conditions such as the cutting angles (axial and radial rake angle) on the surface integrity (roughness and the residual stresses) was observed. The results indicated that the cutting angles have a limited influence on roughness parameters, whereas the effects on residual stresses were greater. A negative axial rake angle induced compressive residual stresses regardless of the radial rake angle. In contrast, a positive axial rake angle combined with negative radial rake angle induced tensile residual stresses. To evaluate the fatigue limit, the four point fatigue tests were carried out. Result showed the fatigue limit is sensitive to the surface integrity. The fatigue limit was also evaluated by analytical method (Arola model). A good correlation was found between the analytical results and the experimental results when cutting angles induced compressive residual stress. However the Arola model was less accurate for tensile residual stress surface condition. To improve the prediction precision, the residual stress was considered as a sensitivity parameter and added to Arola model.  相似文献   

7.
Ball burnishing is a surface enhancement process where a residual compressive stress is created in the surface layers of the workpiece. Several studies have been conducted on this process, but they are more concerned with the experimental aspect. So, there is still a real need for reliable numerical models that enable us to understand the mechanical behaviour of the workpiece during the process. These models also serve to optimise the studied process. Two-dimensional and three-dimensional finite element (FE) ball burnishing modelling is presented in this paper, where an elastic–plastic material model is assumed in the framework of the FE analysis. The pertinence of these models to predict residual stresses created by the process is discussed by drawing comparisons between simulation results and experimental data. The obtained results show that the three-dimensional FE model predicts the residual stresses and provides useful information on the effect of the process parameters.  相似文献   

8.
Machining of critical components such as turbine compressor and pump parts is required to generate compressive residual stress on the surface layer in order to obtain high fatigue life. As an effective method to generate and improve the compressive residual stress of machined parts, burnishing has been widely used in industry. Despite its importance, few studies have investigated the mechanism of burnishing on surface residual stress. In this paper, the interference effects due to nearby burnishing points were revealed and investigated in the context of an elastic burnishing tool. The interference effects during the burnishing process help to enhance the compressive residual stress and improve the distribution of compressive residual stress on the burnished surface layer. In order to analyze the mechanism behind the interference effect more clearly, a 2D finite element model of the burnishing process was developed. It was found that the interference effect exists and becomes stronger as the feed rate is decreased. Small feed rates show a more apparent effect on the enhancement of interference effects. The results indicate that the interference effect of the workpiece surface is mainly created by the influence of the preceding burnishing points on the future burnished surface.  相似文献   

9.
In this paper the use of the ball burnishing process to improve the final quality of Inconel 718 surfaces is studied. This process changes the roughness and residual stresses of the previously end milled surfaces, achieving the finishing requirements for engine components. Both the burnishing system and main parameters are taken into account, considering their influence on finishing. Workpiece surface integrity is ensured due to the compression effect of this surfacef enhancement process and its associated cold working. Results of different tested pieces are discussed in relation to the maximum and mean surface roughness achieved microstructure and surface hardness. Results of heat-treated low carbon mould steel P20 (32 HRC) are compared with those for the nickel alloy Inconel 718 (solution treated and age hardening, 40 HRC). The main conclusions are that using a large radial width of cut in the previous end milling operation, together with a small radial width of cut during burnishing can produce acceptable final roughness. And compression cold working is higher and deeper in the Inconel 718 than in the steel case.  相似文献   

10.
Conventional ball burnishing processes using a roller or a ball pressed against round or small flat surfaces have long been used to improve hardness, fatigue strength, and wear resistance of mechanical parts by plastic deformation. However, the treatment of large flat surfaces using conventional techniques is rarely considered because of its time consumption. In the present work, the optimal burnishing parameters of rolled sheets of aluminum 1050A are determined by means of a newly developed burnishing tool device especially designed to treat large flat surfaces with orders of magnitude reduction in burnishing time. Experiments were designed and performed on a machining center based on response surface methodology with central composite design. The burnished specimens were then tested to find the burnishing condition under which ductility was improved. This study has resulted in significant new insights into the effect of burnishing on the surface quality and workpiece properties of aluminum 1050A plates. A second-order mathematical model, validated using data obtained from atomic force microscopy, was developed to predict the surface roughness as functions of speed, force, and feed rate. The results indicate that burnishing of aluminum 1050A plates improves its ductility, but not its micro-hardness. Following the various burnishing conditions, the micro-hardness measurements range from 40 to 43?HV (50?g), indicating that there is little or no hardening. Although a moderate effect with varied degrees is found on the surface roughness as functions of the investigated parameters, the burnishing force has a significant effect on ductility. The results also indicate that lower values of roughness do not guarantee better ductility for aluminum 1050A plates. Furthermore, the effect of the burnishing loads on the residual stresses was found to depend on the feed direction.  相似文献   

11.
Finite element modeling of burnishing of AISI 1042 steel   总被引:2,自引:0,他引:2  
The aim of this study is to analyze the evolution of surface roughness finished by burnishing. Burnishing is done on a surface that was initially turned or turned and then ground. In a previous work, we have defined an analytical model to determine the Rt factor of burnished surfaces in relation to the feed f, the material displacement δ and the roughness Rti of the initial surface. δ has been calculated using the Hertz contact theory which supposes that the behavior of the workpiece material is elastic. Hence, in this paper, we have defined a finite element model in which the elasto-plastic behavior of the piece is taken into account to determine the material displacement δ. This model has also permitted the calculation of the residual stresses related to the macroscopic contact geometry. Good correlations have been found between experimental and finite element results when burnishing an AISI 1042 steel.  相似文献   

12.
Burnishing is a chipless finishing method, which employs a rolling tool, pressed against the workpiece, in order to achieve plastic deformation of the surface layer. Recent developments made possible burnishing of heat-treated steel components up to 65 HRC. Features of burnishing include a good roughness (comparable to grinding), as well as improvement of mechanical characteristics of the surface (fatigue strength, corrosion resistance, and bearing ratio), due to implementation of compressive stresses into the surface layer. This paper will present influences of certain burnishing parameters upon roughness, for a hardened steel component (64 HRC).  相似文献   

13.
Burnishing is a finishing manufacturing process that provides the required surface integrity of metal parts. Precise process simulation enables optimization to guarantee the quality of the product. A literature review showed that most researches in this field have used an idealized smooth surface for simulations and have not considered the influence of surface roughness on the simulation results. However, for burnishing processes, the initial roughness has a measurable effect on the simulation quality. Hence, an innovative approach for the preparation of the FEM process model was developed. The approach based on reverse engineering. Using 3D scanning, models of the workpiece and the tool were created and imported in the process model. The developed approach was validated through a case study. The results of the simulation with surface roughness demonstrate a better compatibility to the real process than the results of the same simulation on the idealized surface. Hence, using this approach, it is possible to create a precise model of the process and achieve more qualitative result of the burnishing simulations.  相似文献   

14.
In the present study, the analysis and optimization of the ball burnishing process has been studied. The Taguchi technique is employed to identify the effect of burnishing parameters, i.e., burnishing speed, burnishing feed, burnishing force and number of passes, on surface roughness, surface micro-hardness, improvement ratio of surface roughness, and improvement ratio of surface micro-hardness. Taguchi tools such as analysis of variance (ANOVA), signal-to-noise (S/N) ratio and additive model have been used to analyse, obtain the significant parameters and evaluate the optimum combination levels of ball burnishing process parameters. The analysis of results shows that the burnishing force with a contribution percent of 39.87% for surface roughness and 42.85% for surface micro-hardness had the dominant effect on both surface roughness and micro-hardness followed by burnishing feed, burnishing speed and then by number of passes.  相似文献   

15.
This paper is focused on the process of ball burnishing. The influence of tool stiffness on surface roughness parameters was considered theoretically, while experimental investigation was conducted to establish the influence of initial surface roughness (previous machining) on the effects of ball burnishing as the finishing process. Experimental investigations were conducted over a wide interval of most influential process parameters (burnishing forces, burnishing feed, and number of burnishing passes). The material used in the experiments was aluminum alloy EN AW-6082 (AlMgSi1) T651. Burnishing was performed using a specially designed tool of high stiffness. Statistical analysis of experimental data revealed strong correlation between roughness, R a, and burnishing force, burnishing feed, and number of passes for the three surfaces, each with different roughness parameters. Particular combinations of process parameters yielded very low surface roughness, R a, equivalent to polishing. It is worth noting that high surface quality can be achieved with relatively small burnishing forces, which differs from the investigations published so far. Contrary to conventional approaches, which are based on elastic tool systems, the authors propose the burnishing process to be conducted with high-stiffness tools. Further investigation shall be focused on optimization of burnishing process parameters in order to achieve surface finish equivalent to high polish.  相似文献   

16.
In this paper, analysis of influence of residual stresses in the surface layer of cylindrical friction pairs on the operational wear resistance index is carried out. Stresses of the first kind after application of combined machining are investigated. Combined machining is consecutive electromechanical machining and diamond burnishing. A formula for calculation of residual stresses originating in the surface layer after the combined machining is obtained. For computational convenience, a computer program calculating the residual stress parameter is written in Visual studio 2017 C#. The combined machining method creates a potential for improving performance indices due to creation of compressive residual stresses.  相似文献   

17.
Developing and investigating of elastic ball burnishing tool   总被引:1,自引:0,他引:1  
Burnishing, a plastic deformation process, is becoming more popular in satisfying the increasing demands of machine component performance and reliability. Thus, investigating the burnishing parameters in order to improve the product quality is especially crucial. The objective of this research is to evaluate the effect of different burnishing conditions on surface microhardness, surface roughness, and form accuracy. Orthogonal central composite experiment design was used to select the input parameters making them into the right order. Optimum burnishing parameters were established to minimize roughness and/or maximize surface hardening. Emperical formulas were developed to predict the surface microhardness and roughness of leaded brass obtained by burnishing under lubricated conditions.  相似文献   

18.
The establishment of adequate machining guidelines requires the study of several factors (residual stresses, roughness, hardness, microstructural changes, etc.) that define the surface integrity generated in the part by a machining operation. This work studies the surface integrity generated in AISI O1 tool steel by four hard turning (conventional, laser assisted, MQL and conventional with worn tool) and two grinding (production and finishing) processes, as well as by a combined machining process (conventional hard turning + finishing grinding). Hard turning generates tensile stresses and strong structural changes in the machined surface while grinding causes compressive stresses and negligible structural changes. Below the surface, grinding generates slightly tensile or nearly null stresses whereas turning generates strong compressive stresses. The results obtained show that an optimum machining process would imply the combination of hard turning plus a slight final grinding.  相似文献   

19.
The establishment of adequate machining guidelines requires the study of several factors (residual stresses, roughness, hardness, microstructural changes, etc.) that define the surface integrity generated in the part by a machining operation. This work studies the surface integrity generated in AISI O1 tool steel by four hard turning (conventional, laser assisted, MQL and conventional with worn tool) and two grinding (production and finishing) processes, as well as by a combined machining process (conventional hard turning + finishing grinding). Hard turning generates tensile stresses and strong structural changes in the machined surface while grinding causes compressive stresses and negligible structural changes. Below the surface, grinding generates slightly tensile or nearly null stresses whereas turning generates strong compressive stresses. The results obtained show that an optimum machining process would imply the combination of hard turning plus a slight final grinding.  相似文献   

20.
在自行研制的气动滚压装置上,应用响应曲面法中的Box-Bahnken试验设计对高强度耐磨铝青铜材料的滚压性能进行了研究,分别建立了表面粗糙度、显微硬度与滚压参数(滚压力、滚压速度和滚压次数)的数学模型,分析了各参数对表面粗糙度和显微硬度的影响。试验结果表明该滚压装置能使铝青铜工件的表面质量由加工前的Ra2·02μm、HV201达到Ra≤0·12μm、HV330以上。最后根据试验结果对滚压参数进行了优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号