首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SiO2-cBN composites were consolidated by spark plasma sintering at 1473-1973 K. The effects of cBN content and sintering temperature on the relative density, phase transformation, microstructure and mechanical properties of the SiO2-cBN composites were investigated. The relative density of the SiO2-cBN composites increased with increasing SiO2 content. The phase transformation of cBN to hBN in SiO2-cBN composites was identified at 1973 K, showing the highest transformation temperature in cBN-containing composites. The SiO2-20 vol% cBN composites sintered at 1673 K showed the highest hardness and fracture toughness of 12.5 GPa and 1.5 MPa m1/2, respectively.  相似文献   

2.
Three WC-Ti powder mixtures with 5, 10 and 15 wt% titanium were sintered by the spark plasma sintering technique. The microstructures and phase compositions of the samples were investigated by SEM, STEM, EBSD and XRD. The samples consisted of WC, W2C and a (W1-xTx)C phases when the starting amounts of titanium were 5 and 10 wt%. At the titanium content of 15 wt% the microstructure of the samples included W2C, (W1-xTx)C phases and elemental tungsten. The solubility of WC in TiC with the appearance of the (W1-xTx)C phase depended on the stoichiometry of the starting powder composition and sintering temperature. The results of EBSD phase mapping and the XRD investigation are in good agreement with the molar analysis. The best combination of hardness and fracture toughness was achieved with 5 wt% titanium. The appearance of elemental tungsten after sintering the WC-15Ti composition led to a significant reduction in hardness.  相似文献   

3.
《Ceramics International》2017,43(12):9005-9011
Silicon carbide (SiC) ceramics have superior properties in terms of wear, corrosion, oxidation, thermal shock resistance and high temperature mechanical behavior, as well. However, they can be sintered with difficulties and have poor fracture toughness, which hinder their widespread industrial applications. In this work, SiC-based ceramics mixed with 1 wt% and 3 wt% multilayer graphene (MLG), respectively, were fabricated by solid-state spark plasma sintering (SPS) at different temperatures. We report the processing of MLG/SiC composites, study their microstructure and mechanical properties and demonstrate the influence of MLG loading on the microstructure of sintered bodies. It was found that MLG improved the mechanical properties of SiC-based composites due to formation of special microstructure. Some toughening mechanism due to MLG pull-out and crack bridging of particles was also observed. Addition of 3 wt% MLG to SiC matrix increased the Vickers hardness and Young's modulus of composite, even at a sintering temperature of 1700 °C. Furthermore, the fracture toughness increased by 20% for the 1 wt% MLG-containing composite as compared to the monolithic SiC selected for reference material. We demonstrated that the evolved 4H-SiC grains, as well as the strong interactions among the grains in the porous free matrices played an important role in the mechanical properties of sintered composite ceramics.  相似文献   

4.
《Ceramics International》2017,43(14):10645-10653
Alumina-cubic boron nitride (cBN) composites were prepared using the spark plasma sintering (SPS) technique. Alpha-alumina powders with particle sizes of ∼15 µm and ∼150 nm were used as the matrix while cBN particles with and without nickel coating were used as reinforcement agents. The amount of both coated and uncoated cBN reinforcements for each type of matrix was varied between 10 to 30 wt%. The powder materials were sintered at a temperature of 1400 °C under a constant uniaxial pressure of 50 MPa. We studied the effect of the size of the starting alumina powder particles, as well as the effect of the nickel coating, on the phase transformation from cBN to hBN (hexagonal boron nitride) and on the thermo-mechanical properties of the composites. In contrast to micro-sized alumina, utilization of nano-sized alumina as the starting powder was observed to have played a pivotal role in preventing the cBN-to-hBN transformation. The composites prepared using nano-sized alumina reinforced with nickel-coated 30 wt% cBN showed the highest relative density of 99% along with the highest Vickers hardness (Hv2) value of 29 GPa. Because the compositions made with micro-sized alumina underwent the phase transformation from cBN to hBN, their relative densification as well as hardness values were relatively low (20.9–22.8 GPa). However, the nickel coating on the cBN reinforcement particles hindered the cBN-to-hBN transformation in the micro-sized alumina matrix, resulting in improved hardness values of up to 24.64 GPa.  相似文献   

5.
6.
Al2O3/Cu (with 30 wt% of Cu) composites were prepared using a combined liquid infiltration and spark plasma sintering (SPS) method using pre-processed composite powders. Crystalline structures, morphology and physical/mechanical properties of the sintered composites were studied and compared with those obtained from similar composites prepared using a standard liquid infiltration process without any external pressure. Results showed that densities of the Al2O3/Cu composites prepared without applying pressure were quite low. Whereas the composites sintered using the SPS (with a high pressure during sintering in 10 min) showed dense structures, and Cu phases were homogenously infiltrated and dispersed with a network from inside the Al2O3 skeleton structures. Fracture toughness of Al2O3/Cu composites prepared without using external pressure (with a sintering time of 1.5 h) was 4.2 MPa m1/2, whereas that using the SPS process was 6.5 MPa m1/2. These toughness readings were increased by 18% and 82%, respectively, compared with that of pure alumina. Hardness, density and electrical resistivity of the samples prepared without pressure were 693 HV, 82.5% and 0.01 Ω m, whereas those using the SPS process were 842 HV, 99.1%, 0.002 Ω m, respectively. The enhancement in these properties using the SPS process are mainly due to the efficient pressurized infiltration of Cu phases into the network of Al2O3 skeleton structures, and also due to high intensity discharge plasma which produces fully densified composites in a short time.  相似文献   

7.
MgAl2O4 bulk samples were fabricated by two different approaches to investigate the effect of slip casting and sintering temperature on their transparency. Three MgAl2O4 samples containing 1 wt% LiF, as the sintering aid, were prepared by the spark plasma sintering process (SPS) at 1400 °C and 1500 °C, under 100 MPa, for 15 min. Also, another MgAl2O4 sample was prepared by slip casting followed by SPS under similar conditions. It was observed that utilizing slip casting led to more transparency (10% in the visible region and 20% in the IR region) due to the more homogeneous structure. It was also observed that by reducing the SPS temperature from 1500 °C to 1400 °C, the transparency increased (20% in the IR region) because of the lower grain growth rate at the lower temperature.  相似文献   

8.
The effects of TiN and nano-TiB2 additions to titanium carbonitride (TiCN-WC-Cr3C2-Co)-based cermets processed by spark plasma sintering (SPS) are identified. The TiN and nano-TiB2 additions were varied from 0 to 15?wt% to ascertain their combined effects on the mechanical properties. Scanning electron microscopy (SEM) revealed the combined chemical composition of the new phases formed during sintering. The hardness and fracture toughness values were recorded. Increase in the fracture toughness value with TiN addition was more compared with the nano-TiB2 addition. In contrast, the hardness values were higher for the cermets formed with the nano-TiB2 addition. Sintered bodies were made as tool inserts that meet SNGN120408 standard tool configuration. Using these tools, EN24 work-piece was turned at different cutting speeds of 11.87, 29.68, 71.46, 163.88?m/min under conditions of dry cutting. The performance was evaluated. Cutting force as well as surface roughness of the work-piece after machining was measured. For all cutting tools, initially the cutting force was high but it tended to decrease at higher cutting speeds. In addition, for all the tools, at higher cutting tools the surface roughness values were uniformly minimal. The cermet with a composition 55TiCN-15WC-10Co-5Cr3C2–15nanoTiB2 (all in wt%), in particular, showed a balanced enhancement in both fracture toughness (6.8?MPa?m1/2) and Vickers hardness (18?GPa) values. The surface finish of the work-piece was also the best after machining when a tool of the above composition was used.  相似文献   

9.
Al2O3/Ni nanocomposites were prepared by spark plasma sintering (SPS) using reaction sintering method and the mechanical properties of the obtained nanocomposites are reported. The starting materials of Al2O3–NiO solid solution were synthesized from aluminum sulfate and nickel sulfate. These Al2O3–NiO powders were changed into Al2O3 and Ni phases during sintering process. The obtained nanocomposites showed high relative densities (>98%). SEM micrographs showed homogeneously dispersed Ni grains in the matrix. The 3-point strength and the fracture toughness of the composites significantly improved from 450 MPa in the monolithic α-Al2O3 to 766 MPa in the 10 mol% (2.8 vol.%) Ni nanocomposite and from 3.7 to 5.6 MPa m1/2 in 13 mol% (3.7 vol.%) Ni nanocomposite. On the other hand, Young's modulus and Vickers hardness of the nanocomposites were mostly same as those of the monolithic α-Al2O3.  相似文献   

10.
Al2O3/TiCN composites have been fabricated by gas pressure sintering, which overcomes the limitations of hot pressing. The densification behavior and mechanical properties of the Al2O3 gas pressure sintered with 30 wt.% TiCN at different temperatures have been investigated. The gas pressure sintered Al2O3–30 wt.%TiCN composite achieved a relative density of 99.5%, a bending strength of 772 MPa, a hardness of 19.6 GPa, and a fracture toughness of 5.82 MPa·M1/2.  相似文献   

11.
《Ceramics International》2019,45(16):19737-19746
In this study, ultrafine tool materials were produced by spark plasma sintering using three sets of WC-8Co nanopowders mixed by different methods. Effects of powder preparation method and sintering temperature on the consolidation of WC-8Co cemented carbides were investigated. At sintering temperature of 1250 °C, cemented carbide sintered from the powder mixed by ultrasonic vibration method exhibited homogeneous microstructure, high relative density (99.1%), small average grain size (280 nm), and excellent mechanical properties (HV: 18.8 GPa, KIC: 11.4 MPa⋅m1/2). However, cemented carbide sintered from heavily ball-milled powder (ball milling for 24 h) showed increased grain coalescence and microdefects as well as lower relative density of 94.6%. Moreover, its hardness decreased to 17.7 GPa due to the decrease in relative density. Furthermore, straight cracks along grain boundary became dominant, causing fracture toughness to decrease to 10.5 MPa⋅m1/2. Additionally, high sintering temperature caused grain coarsening, which was detrimental to mechanical properties of cemented carbides.  相似文献   

12.
The aim of this present work is to study the effect of VC and/or Cr3C2 in densification, microstructural control and mechanical behaviour of WC-12Co ultrafine and nanocrystalline mixtures, consolidated by spark plasma sintering at 1100 °C, applying a pressure of 80 MPa in combination with a heating rate of 100 °C min−1. Nanocrystalline and ultrafine mixtures with an average size of 30 nm and 100-250 nm, respectively, with the addition of 1 and 0.5 wt.% of VC/Cr3C2 grain growth inhibitors, respectively, were investigated. The density, microstructure, hardness and fracture toughness of the consolidated samples were measured and observed. The addition of VC inhibitor allows an excellent grain growth control keeping microstructures with an average grain size of 154 nm. The hardness values and fracture toughness obtained were about 2000 HV30 and above 10 MPa m1/2, respectively.  相似文献   

13.
The influence of spark plasma sintering (SPS) parameters (temperature, time, pressure) and the role of particle size on densification, microstructure and mechanical properties of commercial additive-free TiB2, SiC and composites thereof were studied by X-ray diffraction, scanning electron microscopy, the ultrasonic method and indentation. Three particle sizes of SiC and 2 of TiB2 were processed. An optimal cycle was found for TiB2 and SiC: 2000?°C, 3?min dwell time, and 100?MPa applied at 600?°C. The relative density of pure SiC increases linearly from 70% to 90% when the initial particle size decreases from 1.75?µm to 0.5?µm. Pure TiB2 was densified up to 87%. Using 2.5?wt% SiC in TiB2, the relative density increases to 97%. Young's modulus and the hardness of all samples were measured, with results discussed. The higher properties were obtained for additive-free TiB2–5%SiC with a relative density of 97% and with the Young's modulus and Vickers hardness values being close to 378?GPa and 23?GPa, respectively.  相似文献   

14.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

15.
The fine grains of Al2O3-Cr2O3/Cr-carbide nanocomposites were prepared by employing recently developed spark plasma sintering (SPS) technique. The initial materials were fabricated by a metal organic chemical vapor deposition (MOCVD) process, in which Cr(CO)6 was used as a precursor and Al2O3 powders as matrix in a spouted chamber. The basic mechanical properties like hardness, fracture strength and toughness, and the nanoindentation characterization of nanocomposites such as Elastics modulus (E), elastic work (We) and plastic work (Wp) were analyzed. The microstructure of dislocation, transgranular and step-wise fracture surface were observed in the nanocomposites. The nanocomposites show fracture toughness of (4.8 MPa m1/2) and facture strength (780 MPa), which is higher than monolithic alumina. The strengthening mechanism from the secondary phase and solid solution are also discussed in the present work. Nanoindentation characterization further illustrates the strengthening of nanocomposites.  相似文献   

16.
It was shown that spark plasma sintered silicon nitride with a high content of Al2O3 and MgO consists of α and β silicon nitride, the main phase being α silicon nitride. The increase in the sintering temperature did not lead to significant changes in the phase composition as occurs in silicon nitride added with Al2O3-Y2O3. It was found that increasing in SPS temperature above 1650 °C leads to an insignificant increase in the density. A complex shaped equiaxed grain microstructure was shown in both cases. However, doping with aluminum and yttrium oxides allows obtaining an elongated grain microstructure. The Hall-Petch effect was observed for the microhardness of the investigated SPSed silicon nitride. The microhardness of the described ceramics was rather high and more than 1900 HV compared to the pressureless sintered at 1800 °C silicon nitride with the microhardness equal to 1511 HV.  相似文献   

17.
The densification behaviors of Al2O3–Cr2O3/Cr3C2 nanocomposites prepared by a Spark Plasma Sintering (SPS) were investigated in this work. The initial powders used for sintering were Al2O3–Cr2O3, which were prepared by metal organic chemical vapor deposition (MOCVD) in a spout bed. Different colors of the compacts such as green, purple and black were observed after densification process at different SPS temperatures from 1200 °C to 1350 °C. These changes of color were relevant to the existence of secondary phase of green Cr2O3, pink solid solution of Cr2O3–Al2O3 and black Cr3C2, which were formed under the different SPS temperature. The secondary phase of Cr2O3 retarded the processing of densification for spark plasma sintering at 1200 °C. The Cr2O3 reacted with Al2O3 to form solid solution of Cr2O3–Al2O3 and with carbon to form Cr3C2 as sintering temperature increased to 1350 °C. The characteristics of high heating rate, shorter sintering time for SPS and the formation of secondary phase of Cr3C2 effectively reduced the substrate's grain growth, making Al2O3–Cr2O3/Cr3C2 nanocomposites with small grain size.  相似文献   

18.
A fine grained Ti(C, N) cermet tool material was prepared by two-step spark plasma sintering. Microstructure evolution and densification mechanisms of Ti(C, N) during spark plasma sintering were studied. Effect of two-step sintering process and Ni content on microstructure and mechanical properties were also investigated. The critical activated densification temperature of Ti(C, N) is about 1300?℃, and the rapidest densification rate takes place at 1300?℃~1400?℃. Grains are in the size of 1?µm when the Ti(C, N) cermet was prepared by two-step spark plasma sintering. The optimal flexural strength, fracture toughness and Vickers hardness are 1094?±?42?MPa, 7.2?±?0.5?MPa?m1/2 and 18.3?±?0.4?GPa, respectively. The Ti(C, N) cermets containing more content of Ni have higher toughness, which is due to the remarkable toughening effect of crack bridging by large grains.  相似文献   

19.
CVD–SiC coated C/SiC composites (C/SiC) were joined by spark plasma sintering (SPS) by direct bonding with and without the aid of joining materials. A calcia-alumina based glass–ceramic (CA), a SiC + 5 wt% B4C mixture and pure Ti foils were used as joining materials in the non-direct bonding processes. Morphological and compositional analyses were performed on each joined sample. The shear strength of joined C/SiC was measured by a single lap test and found comparable to that of C/SiC.  相似文献   

20.
One kind of TiB2/TiC composite ceramic tool material toughened by graphene nanosheets was fabricated by spark plasma sintering. Effects of graphene nanosheets on microstructure, mechanical properties and toughening mechanisms were investigated. The results indicated that TiB2/TiC with 0.1?wt% graphene nanosheets sintered at 1800?°C with the holding time of 5?min obtained full densification and optimal mechanical properties. Its fracture toughness and Vickers hardness were 7.9?±?1.2?MPa?m1/2 and 20.0?±?0.7?GPa, respectively. Excess graphene nanosheets had no effects to toughness improvement. Fracture toughness was increased by 31.7% in comparison with the TiB2/TiC without graphene nanosheets. Toughness enhancement mainly benefited from crack bridging, also slip-stick effect of graphene made it hard to detach and effectively restrained crack extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号