首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied whether a chronic neuropathy induced by unilateral spinal nerve ligation changes the response characteristics of spinal dorsal horn wide-dynamic range (WDR) neurons or their periaqueductal gray (PAG)-induced descending modulation. Experiments were performed in rats with behaviorally demonstrated allodynia induced by spinal nerve ligation and in a group of nonneuropathic control rats. The stimulus-response functions of WDR neurons for mechanical and thermal stimuli and the modulation of their peripherally evoked responses by electrical stimulation of the PAG were determined under pentobarbital anesthesia. The results showed that neuropathy caused a significant leftward shift in stimulus-response functions for mechanical stimuli. In contrast, stimulus-response functions for noxious heat stimuli in the neuropathic limb were, if anything, shifted rightward, although this shift was short of statistical significance. In neuropathic rats, PAG stimulation produced a significantly stronger attenuation of spinal neuronal responses induced by noxious heat in the unoperated than in the operated side. At the intensity that produced attenuation of noxious heat stimuli, PAG stimulation did not produce any significant change in spinal neuronal responses evoked by mechanical stimuli either from the operated or the nonoperated hindlimb of the neuropathic rats. Spontaneous activity of WDR neurons was higher in the operated side of neuropathic rats than in control rats. Afterdischarges evoked by peripheral stimuli were observed in 1/16 of the WDR neurons ipsilateral to spinal nerve ligation and not at all in other experimental groups. The WDR neurons studied were not activated by innocuous or noxious cold stimuli. The results indicate that spinal nerve ligation induces increased spontaneous activity and enhanced responses to mechanical stimuli in the spinal dorsal horn WDR neurons, whereas noxious heat-evoked responses are not significantly changed or if anything, attenuated. Moreover, the inhibition of noxious heat stimuli by PAG stimulation is attenuated in the neuropathic side. It is proposed that the observed changes in the response characteristics of the spinal dorsal horn WDR neurons and in their descending modulation may contribute to the neuropathic symptoms in these animals.  相似文献   

2.
Activation of neurons in the midbrain periaqueductal gray (PAG) inhibits spinal dorsal horn neurons and produces behavioral antinociception in animals and analgesia in humans. Although dorsal horn regions modulated by PAG activation contain all three opioid receptor classes (mu, delta, and kappa), as well as enkephalinergic interneurons and terminal fields, descending opioid-mediated inhibition of dorsal horn neurons has not been demonstrated. We examined the contribution of dorsal horn mu-opioid receptors to the PAG-elicited descending modulation of nociceptive transmission. Single-unit extracellular recordings were made from rat sacral dorsal horn neurons activated by noxious heating of the tail. Microinjections of bicuculline (BIC) in the ventrolateral PAG led to a 60-80% decrease in the neuronal responses to heat. At the same time, the responses of the same neurons to iontophoretically applied NMDA or kainic acid were not consistently inhibited. The inhibition of heat-evoked responses by PAG BIC was reversed by iontophoretic application of the selective mu-opioid receptor antagonists, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). A similar effect was produced by naloxone; however, naloxone had an excitatory influence on dorsal horn neurons in the absence of PAG-evoked descending inhibition. This is the first demonstration that endogenous opioids acting via spinal mu-opioid receptors contribute to brain stem control of nociceptive spinal dorsal horn neurons. The inhibition appears to result in part from presynaptic inhibition of afferents to dorsal horn neurons.  相似文献   

3.
The effects of nitrous oxide (75%) on the spinal dorsal born wide dynamic range (WDR) neuronal activity were studied in either spinal cord intact or spinal cord-transected cats. Extracellular activity was recorded in the dorsal horn from single WDR neurons responding to noxious and non-noxious stimuli applied to the cutaneous receptive fields on the left bind foot pads of intact or decerebrate, spinal cord-transected (L 1-2) cats. The experiment was divided into four sections as follows: (1) When 10 micrograms of bradykinin (BK) was injected into the femoral artery ipsilateral to the recording site as the noxious test stimulus in the spinal cord-transected cat, all of 6 WDR neurons gave excitatory responses which were not depressed by 75% nitrous oxide. (2) When the injection of 10 micrograms of BK into the femoral artery ipsilateral to the recording site was used in the spinal cord-intact cat, 6 of 15 WDR neurons (40%) gave excitatory responses, which were significantly depressed by 75% nitrous oxide, and 9 of 15 WDR neurons (60%) gave inhibitory responses, which were not affected by 75% nitrous oxide. (3) When 10 micrograms of bradykinin (BK) was injected into the femoral artery contralateral to the recording site as the noxious test stimulus in the spinal cord transected cat, 6 of 12 WDR neurons gave excitatory reasons, which were not depressed by 75% nitrous oxide. (4) When the injection of 10 micrograms of BK into the femoral artery contralateral to the recording site was used in the spinal cord-intact cat, 6 of 6 WDR neurons (100%) gave responses, which were affected by 75% nitrous oxide. We have observed that nitrous oxide reduces the excitation and inhibition of dorsal born WDR neuronal activities induced by BK injection in spinal cord-intact cats, but does not reduce the excitation of those in spinal cord-transected cats. This finding confirmed that the antinociceptive effect of nitrous oxide might be modulated by supraspinal descending inhibitory control systems. In addition our result showed that the supraspinal effect of nitrous oxide was mediated not only by an increase but also a decrease in a supraspinal descending inhibition.  相似文献   

4.
'Diffuse noxious inhibitory controls' or DNIC is the inhibition of multireceptive neurons in the dorsal horn of the spinal cord that results when a noxious stimulus is applied to a region of the body remote from the neuron's excitatory receptive field. Although this phenomenon is well-documented, the behavioral consequences of DNIC are not clear. The present study was undertaken to determine how nocifensor withdrawal reflexes evoked by a noxious stimulus are altered by application of a second noxious stimulus to a distant part of the body. The tail flick or hindpaw withdrawal reflex of lightly anesthetized (0.6-1.0% halothane) rats was measured before, during and after another appendage was placed in water ranging in temperature from 45 to 54 degrees C. When the forepaw or hindpaw was placed in water exceeding 49 degrees C the tail flick reflex to acute noxious radiant heat was inhibited. In contrast, noxious conditioning stimuli, regardless of temperature or location, had no effect on the latency for hindpaw withdrawal evoked by an acute noxious stimulus, but did produce a change in reflex topography from flexion to extension. These results, along with previous research on DNIC, suggest that intense noxious stimuli: (1) inhibit the tail flick reflex via inhibition of multireceptive neurons in the dorsal horn; (2) disinhibit hindpaw extensor motoneurons by inhibiting the activity of multireceptive neurons involved in hindlimb flexion; and (3) reduce pain sensation by inhibiting multireceptive neurons projecting to the brain (see Model in Discussion).  相似文献   

5.
BACKGROUND: The spinal cord appears to be the site where anesthetic agents prevent movement in response to noxious stimuli. When isoflurane is differentially delivered to the head and torso (with low torso concentrations), cranial anesthetic requirements increase compared with systemic administration. The aim of the current study was to test the hypothesis that isoflurane action in the brain has descending influences on spinal cord dorsal horn neurons. A secondary aim was to determine the association, if any, of high cranial concentrations of isoflurane (>6%) with dorsal horn activity. METHODS: Ten goats were anesthetized with isoflurane and the carotid arteries and jugular veins isolated and cannulated for cerebral bypass. A laminectomy was performed for recording from single lumbar dorsal horn neurons with hind limb mechanical receptive fields (one cell per goat). A standard noxious mechanical stimulus was applied to the dew claw or hoof bulb during a control period with end-tidal isoflurane at 1.3% and during bypass with the following head/torso isoflurane concentrations: 1.3%/1.3%, 3.2%/1.3%, 9.4%/1.3%, 1.3%/0.2%, 3.0%/0.2% and 8.8%/0.3%. RESULTS: When torso isoflurane concentration was 1.3%, increasing cranial isoflurane concentration to 3% or 9% had no significant effect on the activity of dorsal horn units. When torso isoflurane was 0.2-0.3%, spontaneous activity increased; however, at these torso concentrations, evoked responses were significantly decreased (-60%) only when cranial isoflurane concentration was increased to 9%. CONCLUSIONS: Isoflurane action in the brain had an inhibitory effect on dorsal horn activity with the combination of supraclinical cranial and low torso concentrations.  相似文献   

6.
Plasticity in the central nervous system may play an important role in clinical pain. The present study shows that long-term potentiation (LTP) may be induced in single wide dynamic range (WDR) neurons in the dorsal horn after high-frequency stimulation of the sciatic nerve in intact urethane anaesthetized rats. Extracellular recordings of firing responses after single pulse stimuli were made. The high-frequency conditioning stimulus increased the A beta- and C-fibre-mediated firing responses to single pulse stimuli by 60 and 130%, respectively, for more than 6 h. This finding supports a role for WDR neurons in 'nociceptive memory' in the dorsal horn. The model presented here may be an important tool for further investigations of mechanisms of plasticity within the dorsal horn.  相似文献   

7.
The effects of noxious stimulation of one hindpaw on the dorsal horn wide dynamic range (WDR) neurons activity of the opposite side were examined and compared in rats with chronic constriction of one sciatic nerve (CCI), in intact rats and in sham operated rats. Extracellular recordings, were performed in anesthetized, paralyzed rats in the sciatic spinal cord segments (L5-L6). Both the number and the magnitude of the responses were significantly larger in CCI than in intact and in sham rats. The effect was mainly excitatory, only in a few cases was inhibition observed. The relation of the contralateral increased efficacy with the level of excitability of the target neurons is discussed and a role of the potentiated cross transmission in some contralateral pain disorders is hypothesized.  相似文献   

8.
The modulatory effects of electrical and chemical (glutamate) stimulation in the rostral ventromedial medulla (RVM) on spinal nociceptive transmission and a spinal nociceptive reflex were studied in rats. Electrical stimulation at a total 86 sites in the RVM in the medial raphe nuclei (n = 54) and adjacent gigantocellular areas (n = 32) produced biphasic (facilitatory and inhibitory, n = 43) or only inhibitory (n = 43) modulation of the tail-flick (TF) reflex. At these 43 biphasic sites in the RVM, facilitation of the TF reflex was produced at low intensities of stimulation (5-25 microA) and inhibition was produced at greater intensities of stimulation (50-200 microA). At 43 sites in the RVM, electrical stimulation only produced intensity-dependent inhibition of the TF reflex. Activation of cell bodies in the RVM by glutamate microinjection reproduced the biphasic modulatory effects of electrical stimulation. At biphasic sites previously characterized by electrical stimulation, glutamate at a low concentration (5 nmol) produced facilitation of the TF reflex; a greater concentration (50 nmol) only inhibited the TF reflex. In electrophysiological experiments, electrical stimulation at 62 sites in the RVM produced biphasic (n = 26), only inhibitory (n = 26), or only facilitatory (n = 10) modulation of responses of lumbar spinal dorsal horn neurons to noxious cutaneous thermal (50 degrees C) or mechanical (75.9 g) stimulation. Facilitatory effects were produced at lesser intensities of stimulation and inhibitory effects were produced at greater intensities of stimulation. The apparent latencies to stimulation-produced facilitation and inhibition, determined with the use of a cumulative sum method and bin-by-bin analysis of spinal neuron responses to noxious thermal stimulation of the skin, were 231 and 90 ms, respectively. The spinal pathways conveying descending facilitatory and inhibitory influences were found to be different. Descending facilitatory influences on the TF reflex were conveyed in ventral/ventrolateral funiculi, whereas inhibitory influences were conveyed in dorsolateral funiculi. The results indicate that descending inhibitory and facilitatory influences can be simultaneously engaged throughout the RVM, including nucleus raphe magnus, and that such influences are conveyed in different spinal funiculi.  相似文献   

9.
In the rat, applying noxious heat stimuli to the excitatory receptive fields and simultaneously to adjacent, much larger, areas of the body results in a surface-related reduction in the responses of lumbar dorsal horn convergent neurons. These inhibitory effects induced by spatial summation of nociceptive inputs have been shown to involve a supraspinally mediated negative feedback loop. The aim of the present study was to determine the anatomic level of integration of these controls and hence to ascertain what relationships they might share with other descending controls modulating the transmission of nociceptive signals. The responses of lumbar convergent neurons to noxious stimulation (15-s immersion in a 48 degrees C water bath) applied to increasing areas of the ipsilateral hindlimb were examined in several anesthetized preparations: sham-operated rats, rats with acute transections performed at various levels of the brain stem, and spinal rats. The effects of heterotopic noxious heat stimulation (tail immersion in a 52 degrees C water bath) on the C-fiber responses of these neurons also were analyzed. The electrophysiological properties of dorsal horn convergent neurons, including their responses to increasing stimulus surface areas, were not different in sham-operated animals and in animals the brain stems of which had been transected completely rostral to a plane -2. 8 mm remote from interaural line (200 micron caudal to the caudal end of the rostral ventromedial medulla). In these animals, increasing the stimulated area size from 4.8 to 18 cm2 resulted in a 35-45% reduction in the responses. In contrast, relative to responses elicited by 4.8 cm2 stimuli, responses to 18 cm2 were unchanged or even increased in animals with transections at more caudal level and in spinal animals. Inhibitions of the C-fiber responses elicited by heterotopic noxious heat stimulation were in the 70-80% range during conditioning in sham-operated animals and in animals with rostral brain stem transections. Such effects were reduced significantly (residual inhibitions in the 10-20% range) in animals with transections >500 micron caudal to the caudal end of the rostral ventromedial medulla and in spinal animals. It is concluded that the caudal medulla constitutes a key region for the expression of negative feed-back mechanisms triggered by both spatial summation of noxious inputs and heterotopic noxious inputs.  相似文献   

10.
11.
A combination of intracellular electrophysiological recording and injection of horseradish peroxidase with ultrastructural immunocytochemistry was used to investigate the synaptic interplay between substance P- and enkephalin-immunoreactive axonal boutons and three types of functionally characterized dorsal horn neurons in the cat spinal cord. The dorsal horn neurons were classified as nociceptive specific, wide dynamic range and non-nociceptive based on their responses to innocuous and noxious stimuli. Most of the nociceptive neurons (either nociceptive specific or wide dynamic range) contained enkephalin immunoreactivity, but none of the non-nociceptive neurons were positive for enkephalin. Three types of immunoreactive boutons were found in contact with the functionally characterized dorsal horn neurons. These boutons were positive for either substance P, enkephalin, or substance P+enkephalin. Quantitative analysis revealed that the percentages of substance P-immunoreactive boutons apposed to the cell bodies, proximal dendrites and distal dendrites of nociceptive neurons were significantly higher than those of non-nociceptive neurons. Furthermore, the percentages of substance P+enkephalin-immunoreactive axonal boutons apposed to the distal dendrites of nociceptive neurons were significantly higher than those of non-nociceptive neurons and the percentages of enkephalin-immunoreactive boutons apposed to the cell bodies and proximal dendrites of nociceptive neurons were significantly higher than in non-nociceptive neurons. Finally, neither enkephalin-immunoreactive nor substance P+enkephalin-immunoreactive boutons were ever seen presynaptic to substance P-immunoreactive boutons. These results provide evidence of an anatomical substrate within the dorsal horn for the interaction of substance P-mediated with enkephalin-mediated mechanisms. The data support the idea that the modulation of nociceptive input in the dorsal horn by enkephalinergic neurons occurs mainly via a postsynaptic mechanism, and thus suggest that dorsal horn enkephalinergic neurons participate in a local inhibitory feedback loop in a distinct pathway from the previously postulated opioid-mediated depression of substance P release from primary afferent terminals.  相似文献   

12.
A chronic animal preparation allowed us to compare activity of the same single, spinal dorsal horn neurons in the physiologically intact, awake, drug-free state and in the anesthetized state. The inhalation anesthetic enflurane produced profound, and at times, opposite effects on spinal dorsal horn neuron responses to non-noxious and noxious receptive field stimulation. Some effects would not have been predicted, based upon current understanding of anesthetics.  相似文献   

13.
Substance P is released in the spinal cord in response to painful stimuli, but its role in nociceptive signaling remains unclear. When a conjugate of substance P and the ribosome-inactivating protein saporin was infused into the spinal cord, it was internalized and cytotoxic to lamina I spinal cord neurons that express the substance P receptor. This treatment left responses to mild noxious stimuli unchanged, but markedly attenuated responses to highly noxious stimuli and mechanical and thermal hyperalgesia. Thus, lamina I spinal cord neurons that express the substance P receptor play a pivotal role in the transmission of highly noxious stimuli and the maintenance of hyperalgesia.  相似文献   

14.
ATP P2x receptors and sensory synaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats. J. Neurophysiol. 80: 3356-3360, 1998. Glutamate is a major fast transmitter between primary afferent fibers and dorsal horn neurons in the spinal cord. Recent evidence indicates that ATP acts as another fast transmitter at the rat cervical spinal cord and is proposed to serve as a transmitter for nociception and pain. Sensory synaptic transmission between dorsal root afferent fibers and neurons in the superficial dorsal horn of the lumbar spinal cord were examined by whole cell patch-clamp recording techniques. Experiments were designed to test if ATP could serve as a transmitter at the lumbar spinal cord. Monosynaptic excitatory postsynaptic currents (EPSCs) were completely abolished after the blockade of both glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and N-methyl--aspartate receptors. No residual current was detected, indicating that glutamate but not ATP is a fast transmitter at the dorsal horn of the lumbar spinal cord. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a selective P2x receptor antagonist, produced an inhibitory modulatory effect on fast EPSCs and altered responses to paired-pulse stimulation, suggesting the involvement of a presynaptic mechanism. Intrathecal administration of PPADS did not produce any antinociceptive effect in two different types of behavioral nociceptive tests. The present results suggest that ATP P2x2 receptors modulate excitatory synaptic transmission in the superficial dorsal horn of the lumbar spinal cord by a presynaptic mechanism, and such a mechanism does not play an important role in behavioral responses to noxious heating. The involvement of other P2x subtype receptors, which is are less sensitive to PPADS, in acute nociceptive modulation and persistent pain remains to be investigated.  相似文献   

15.
The dorsal raphe nucleus (DRN) is an important nucleus in pain modulation. It has abundant 5-HT neurons and many other neurotransmitter and/or neuromodulator containing neurons. Its vast fiber connections to other parts of the central nervous system provide a morphological basis for its pain modulating function. Its descending projections, via the nucleus raphe magnus or directly, modulate the responses caused by noxious stimulation of the spinal dorsal horn neurons. In ascending projections, it directly modulates the responses of pain sensitive neurons in the thalamus. It can also be involved in analgesia effects induced by the arcuate nucleus of the hypothalamus. Neurophysiologic and neuropharmacologic results suggest that 5-HT neurons and ENKergic neurons in the DRN are pain inhibitory, and GABA neurons are the opposite. The studies of the intrinsic synapses between ENKergic neurons, GABAergic neurons, and 5-HT neurons within the DRN throw light on their relations in pain modulation functions, and further explain their functions in pain mediation.  相似文献   

16.
BACKGROUND: The spinal cord appears to be the site at which isoflurane suppresses movement that occurs in response to a noxious stimulus. In an attempt to localize its site of suppressant action, the authors determined the effect of isoflurane on dorsal horn neuronal responses to supramaximal noxious stimulation at end-tidal concentrations that just permitted and just prevented movement. METHODS: Rats (n = 14) were anesthetized with isoflurane, and after lumbar laminectomy, the minimum alveolar concentration (MAC) for each rat was determined using a supramaximal mechanical stimulus. In these same rats, after extracellular microelectrode placement in the lumbar spinal cord, dorsal horn neuronal responses to the supramaximal stimulus were determined at the concentrations of isoflurane that bracketed each rat's MAC (0.1% higher and lower than MAC). The MAC of isoflurane was then re-determined. RESULTS: Dorsal horn neuronal response was 1,757+/-892 impulses/min at 0.9 MAC and 1,508+/-988 impulses/min at 1.1 MAC, a 14% decrease (P < 0.05). Cell responses varied, with some cells increasing their response at the higher concentration of isoflurane. The MAC of isoflurane was 1.38+/-0.2% before and 1.34+/-0.2% after determination of dorsal horn neuronal responses. CONCLUSIONS: Isoflurane, at concentrations that bracket MAC, has a variable and minimal depressant effect on dorsal horn cell responses to noxious mechanical stimulation. These data suggest that the major action of isoflurane to suppress movement evoked by a noxious stimulus might occur primarily at a site other than the dorsal horn.  相似文献   

17.
Simultaneous recordings of 135 pairs of units, located respectively in the superficial (I-IIo) and deep (V) laminae of the dorsal horn of the lumbar spinal cord of anaesthetized and paralysed animals, were performed both from normal (62 pairs) and from peripherally injured (chronically constricted sciatic nerve) rats (73 pairs). In each pair, one neuron was classified as nociceptive, responding only to noxious stimuli, and the other as a wide dynamic range neuron, responding to both non-noxious and noxious stimuli. To understand if some interaction was present between diverse neurons modulated by noxious inputs, we used cross-correlation techniques. The responses of simultaneously recorded pairs of units to suprathreshold (5 mA, 0.5 ms) electrical stimuli were used. A clearly delayed peak in the cross-correlograms of recordings from normal animals was present, indicating connectivity of superficial and deep-layer cells. This feature was not present in the cross-correlograms obtained from nerve-injured animals. Even if a specific pathway cannot be explicitly assigned to support these functional results, an overall connection between superficial and deep layers of the spinal cord is suggested. These connections are supposed to be either inactive or rearranged in the nerve-injured rats, thus suppressing a well timed coordinated connectivity. This anomaly could underlie a reduced degree of functional coherence in the modulation of nociceptive spinal inputs in cases of chronic pain.  相似文献   

18.
In vivo electrophysiological assays in anesthetized rats have been used to compare the effects of the 5HT1B/1D receptor agonist, naratriptan, on central trigeminal nociceptive processing from dural and cutaneous inputs with its effects on nociceptive processing in the spinal cord. Naratriptan inhibited responses of single trigeminal neurons, to noxious electrical and mechanical stimulation of the dura and face, dose dependently by a maximum of 67+/-3% and 70+/-18%, respectively, at 3 mg kg(-1) i.v. In contrast, naratriptan did not affect spinal dorsal horn neuronal responses to noxious mechanical stimulation of the hind-paw. These findings suggest that 5HT1B/1D receptors have differential effects on nociceptive processing in the trigeminal versus spinal dorsal horns and provide a potential explanation for the lack of general analgesic effects of brain penetrant 5HT(1B/1D) agonist antimigraine drugs.  相似文献   

19.
Histamine elicits the sensation of itch at the site of skin application as well as alloknesis (itch elicited by innocuous mechanical stimuli) in a surrounding area in humans and expansion of the low-threshold mechanosensitive receptive field area of spinal wide dynamic range (WDR)-type dorsal horn neurons in rats. We presently tested if the histamine-evoked expansion of neuronal receptive field area depends on a spinal N-methyl-D-aspartate (NMDA) receptor-mediated process. In pentobarbital sodium-anesthetized rats, mechanical receptive field areas of single WDR-type dorsal horn neurons were mapped with graded von Frey filaments before and 10 min after intracutaneous (ic) microinjection of histamine (1 microl; 1, 3, or 10%) at a low-threshold site within the receptive field. Intracutaneous microinjection of histamine evoked dose-related increases in firing rate, as well as a dose-dependent expansion in mean receptive field area 10 min after 3 and 10%, but not 1%, histamine doses. When a noncompetitive or competitive NMDA receptor antagonist dizocilpine [MK-801; D(-)-2-amino-5-phosphonovalerate (APV), respectively; 1 microM] was first applied topically to the surface of the spinal cord, there was no significant change in mean receptive field area after ic microinjection of 10% histamine. The mean neuronal response to histamine in the presence of spinal MK-801 or APV was not significantly different from the mean response to histamine in the absence of these drugs. These results suggest that spinal NMDA receptors are involved in histamine-induced expansion of mechanical receptive field area, a neural event possibly involved in the development of alloknesis.  相似文献   

20.
The acid sensing ion channel (ASIC) identified in rat brain and spinal cord is potentially involved in the transmission of acid-induced nociception. We have developed polyclonal antisera against ASIC, and used them to screen rat brain and spinal cord using immunocytochemistry. ASIC-immunoreactivity (-ir) is present in but not limited to the superficial dorsal horn, the dorsal root ganglia (DRG) and the spinal trigeminal nucleus, as well as peripheral nerve fibers. These observations, combined with the disappearance of ASIC-ir following dorsal rhizotomy, suggest localization of ASIC to primary afferents. DRG ASIC-ir co-localizes with substance P (SP) and calcitonin gene-related peptide (CGRP)-ir in small capsaicin-sensitive cell bodies, suggesting that ASIC is poised to play a role in the transduction of noxious stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号