首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a high‐performance 3.4‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display with remarkably high resolution using an oxide semiconductor in a backplane, by applying our transfer technology that utilizes metal separation layers. Using this panel, we also fabricated a prototype of a side‐roll display for mobile uses. In these AMOLED displays, a white OLED combined with a color filter was used in order to achieve remarkably high resolution. For the white OLED, a tandem structure in which a phosphorescent emission unit and a fluorescent emission unit are serially connected with an intermediate layer sandwiched between the emission units was employed. Furthermore, revolutionary technologies that enable a reduction in power consumption in both the phosphorescent and fluorescent emission units were introduced to the white tandem OLED.  相似文献   

2.
Abstract— Several white‐OLED structures with a high color‐rendering index (CRI) were investigated for lighting applications. A two‐unit fluorescent/phosphorescent hybrid white OLED achieved an excellent CRI of 95, high luminous efficacy of 37 lm/W, and long lifetime of over 40,000 hours at 1000 cd/m2. White‐OLED lighting panels of 8 × 8 cm for high‐luminance operation were fabricated, and a stable emission at 3000 cd/m2 was confirmed. Quite a small variation in chromaticity in a different directions was achieved by using an optimized optical device structure. With a light‐outcoupling substrate, a higher efficacy of 56 lm/W, high CRI of 91, and longer half‐decay lifetime of over 150,000 hours at 1000 cd/m2 was achieved. All‐phosphorescent white OLEDs placed on the light‐outcoupling substrate show a high CRI of 85 and higher efficacy of 65 lm/W with a fairly good half‐decay lifetime of over 30,000 hours. With a further voltage reduction and a high‐index spherical extractor, 128 lm/W at 1000 cd/m2 has been achieved.  相似文献   

3.
Abstract— We have used bis(8‐quinolinolato)phenolato‐aluminum complexes as emission‐layer hosts in red‐phosphorescent OLED devices. This enabled high‐efficiency long‐lived OLED devices with a simple device structure that does not require a hole‐blocking layer. Devices with a red‐phosphorescent dopant introduced into a noble bis(8‐quinolinolato)phenolato‐aluminum complex exhibited a high efficiency of 12 cd/A at CIE color coordinates (0.65, 035) and a long operating lifetime of 30,000 hours or more at an initial luminance of 700 cd/m2. Moreover, triplet‐triplet annihilation was reduced in the devices because of the wide emission zone enabled by the complex and the short phosphorescent lifetime of the red‐phosphorescent dopant. We have successfully incorporated these red‐phosphorescent devices into commercial OLED displays.  相似文献   

4.
Abstract— In this paper, the design criteria for scaling up from small‐area organic light‐emitting‐diode (OLED) pixels to large‐area OLED light panels is described. Particular focus is placed on using phosphorescent OLEDs (PHOLEDs) to maximize panel efficacy and uniformity and minimize operating temperature. Data for a pair of all‐phosphorescent 15 × 15 cm OLED light panels are also presented: Panel 1 has 62‐lm/W efficacy, CRI = 81, CCT = 3180K, and lifetime to LT70 = 18,000 hours at 1000 cd/m2 and Panel 2 has 58‐lm/W efficacy, CRI = 82, CCT = 2640K, and lifetime to LT70 = 30,000 hours at 1000 cd/m2. Operating at a 3000 cd/m2 (7740 lm/m2), Panel 2 has 49‐lm/W efficacy with lifetime to LT70 = 4000 hours. Excellent panel lifetime is enabled by a stable light‐blue phosphorescent materials system and by the use of efficient phosphorescent emitters that ensure very low panel temperature without any additional thermal management.  相似文献   

5.
An 8‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display driven by oxide thin‐film transistors (TFTs) has been developed. In‐Ga‐Zn‐O (IGZO)‐TFTs used as driving devices were fabricated directly on a plastic film at a low temperature below 200 °C. To form a SiOx layer for use as the gate insulator of the TFTs, direct current pulse sputtering was used for the deposition at a low temperature. The fabricated TFT shows a good transfer characteristic and enough carrier mobility to drive OLED displays with Video Graphic Array pixels. A solution‐processable photo‐sensitive polymer was also used as a passivation layer of the TFTs. Furthermore, a high‐performance phosphorescent OLED was developed as a red‐light‐emitting device. Both lower power consumption and longer lifetime were achieved in the OLED, which used an efficient energy transfer from the host material to the guest material in the emission layer. By assembling these technologies, a flexible AMOLED display was fabricated on the plastic film. We obtained a clear and uniform moving color image on the display.  相似文献   

6.
Abstract— Organic light‐emitting‐device (OLED) devices are very promising candidates for flexible‐display applications because of their organic thin‐film configuration and excellent optical and video performance. Recent progress of flexible‐OLED technologies for high‐performance full‐color active‐matrix OLED (AMOLED) displays will be presented and future challenges will be discussed. Specific focus is placed on technology components, including high‐efficiency phosphorescent OLED technology, substrates and backplanes for flexible displays, transparent compound cathode technology, conformal packaging, and the flexibility testing of these devices. Finally, the latest prototype in collaboration with LG. Phillips LCD, a flexible 4‐in. QVGA full‐color AMOLED built on amorphous‐silicon backplane, will be described.  相似文献   

7.
Abstract— A new approach to full‐color printable phosphorescent organic light‐emitting devices (P2OLEDs) is reported. Unlike conventional solution‐processed OLEDs that contain conjugated polymers in the emissive layer, the P2OLED's emissive layer consists of small‐molecule materials. A red P2OLED that exhibits a luminous efficiency of 11.6 cd/A and a projected lifetime of 100,000 hours from an initial luminance of 500 cd/m2, a green P2OLED with a luminous efficiency of 34 cd/A and a projected lifetime of 63,000 hours from an initial luminance of 1000 cd/m2, a light‐blue P2OLED with a luminous efficiency of 19 cd/A and a projected lifetime 6000 hours from an initial luminance of 500 cd/m2, and a blue P2OLED with a luminous efficiency of 6.2 cd/A and a projected lifetime of 1000 hours from an initial luminance of 500 cd/m2 is presented.  相似文献   

8.
We fabricated new 2.78‐in 1058‐ppi organic light‐emitting diode (OLED) displays. The displays used OLED devices with a tandem structure and a single structure and a field effect transistor (FET) using c‐axis aligned crystalline In–Ga–Zn–O (CAAC‐IGZO) for an active layer and employing the 1.5‐µm rule over a glass substrate. Even in the displays with such high resolution exceeding 1000 ppi, crosstalk that was observed in the lower luminance region was suppressed. The displays achieved high color reproducibility and reduced viewing angle dependence.  相似文献   

9.
Abstract— The image quality of an OTFT‐driven flexible AMOLED display has been improved by enhancing the performance of OTFTs and OLEDs. To reduce the operating voltage of OTFTs on a plastic film, Ta2O5 with a high dielectric constant was used as a gate insulator. The organic semiconductor layer of the OTFT was successfully patterned by a polymer separator, which is an isolating wall structure using an organic material. The OTFT performance, such as its current on/off ratio, carrier mobility, and spatial uniformity on the backplane, was enhanced. A highly efficient phosphorescent OLED was used as a light‐emission device. A very thin molybdenum oxide film was introduced as a carrier‐injection layer on a pixel electrode to reduce the operating voltage of the OLED. After an OTFT‐driven flexible AMOLED display was fabricated, the luminance and uniformity on the display was improved. The fabricated display also showed clear moving images, even when it was bent at a low operating voltage.  相似文献   

10.
Abstract— A high‐transmittance transflective device based on a hybrid structure consisting of a transparent organic light‐emitting diode (OLED) stacked on top of a reflective liquid‐crystal device (RLCD) was conceptually demonstrated. By placing the transparent OLED on top of a vertically aligned LCD operated under normally black mode, a transmittance as high as 75.7% was obtained due to the asymmetric emission characteristics of a transparent OLED. To further improve the performance in the transmissive mode, a polarizer‐free LCD was used, which yielded an ultra‐high transmittance (82.2% overall).  相似文献   

11.
Abstract— A highly efficient deep‐blue organic light‐emitting device (OLED) incorporating a novel composite hole‐transport layer (c‐HTL) and an emitter based on the new non‐symmetrical mono(styryl)amine fluorescent dopant in the stable host MADN, which achieved a luminance efficiency of 5.4 cd/A with a Commission Internationale d'Eclairage (CIEx,y) of (0.14, 0.13) and an external quantum efficiency of 5.1% at 20 mA/cm2 and 6.8 V, is reported. The increased device efficiency is attributed to an improved balance between hole and electron currents in the recombination zone.  相似文献   

12.
We demonstrate the realization of red, green, and blue colors from top‐emitting white organic light‐emitting diode (OLED) for display applications. In our approach, red, green, and blue colors are realized by microcavity‐based mode selection from the spectrum of a white OLED. For the tuning of individual microcavities, the OLED hole transport layer is patterned by an electron beam process.  相似文献   

13.
Abstract— Universal Display Corp. (UDC), together with its academic partners at Princeton University and the University of Southern California, are developing high‐efficiency electrophosphorescent small‐molecule OLED devices, based on triplet emission. These device systems show good lifetimes, and are well suited for the commercialization of low‐power‐consumption full‐color active‐matrix OLED displays. In this paper we also show how these phosphorescent devices may be driven by low‐cost amorphous‐silicon backplanes, and discuss benefits that could be gained by employing bistable OLED pixels.  相似文献   

14.
In this work, novel blue‐fluorescent dopants with a heteroaromatic ring skeleton instead of the conventional pyrene skeleton were investigated. Bottom‐emission organic light‐emitting diodes (OLEDs) fabricated using the novel blue‐fluorescent dopants in light‐emitting layers achieved better deep‐blue chromaticity than OLEDs based on a conventional pyrene‐based dopant, while maintaining both high external quantum efficiency (EQE) and comparable reliability. The attainment of deep‐blue chromaticity without losing high EQE was ascribed to the improvement of the efficiency of energy transfer from the host to the dopant. Furthermore, it was estimated that using this novel dopant in a top‐emission OLED panel that satisfies BT.2020 chromaticity enables the power consumption of the whole panel to be 24% lower than that of the panel with a conventional dopant.  相似文献   

15.
Abstract— The blue‐light‐emission properties of organic light‐emitting‐diode (OLED) displays must be enhanced to meet the requirements for color purity and luminous efficiency because few blue‐light‐emitting materials meet these requirements. This is particularly true for polymeric and phosphorescent light‐emitting materials. To attain the required purity and efficiency, a polarized‐light‐recycling structure for blue light that is called a blue enhanced circular polarizer (BECP) has been developed. The principle of the structure and the fabricated prototype device is described and it is shown that the structure increases blue‐light intensity and color purity, improves efficiency, provides a wide color gamut, and limits ambient‐light reflection.  相似文献   

16.
Abstract— By using current technology, it is possible to design and fabricate performance‐competitive TV‐sized AMOLED displays. In this paper, the system design considerations are described that lead to the selection of the device architecture (including a stacked white OLED‐emitting unit), the backplane technology [an amorphous Si (a‐Si) backplane with compensation for TFT degradation], and module design (for long life and low cost). The resulting AMOLED displays will meet performance and lifetime requirements, and will be manufacturing cost‐competitive for TV applications. A high‐performance 14‐in. AMOLED display was fabricated by using an in‐line OLED deposition machine to demonstrate some of these approaches. The chosen OLED technologies are scalable to larger glass substrate sizes compatible with existing a‐Si backplane fabs.  相似文献   

17.
This paper discusses the effectiveness of energy transfer from an exciplex to an emitter in both phosphorescent and fluorescent organic light‐emitting diodes. This energy transfer enhances the efficiency, lowers the drive voltage, and extends the lifetime. The increase in the quantum efficiency of a fluorescent organic light‐emitting diode using this mechanism is also analyzed.  相似文献   

18.
In this paper, we present novel organic light‐emitting diode (OLED) display panel compensation technologies for large‐sized ultra‐high‐definition OLED TVs considering variations of threshold voltage, mobility, channel size, OLED efficiency, and OLED uniformity. Using these technologies, we have successfully launched 55‐, 65‐ and 77‐in. ultra‐high‐definition OLED TVs.  相似文献   

19.
Abstract— A key performance attribute for widespread commercialization of OLED technology is achieving maximum power efficiency along with color chromaticity and operational lifetime. Towards this goal, phosphorescent‐OLED (PHOLED) devices have demonstrated potential. Recent PHOLED device results show both excellent device efficiencies and long lifetimes towards the commercialization of low power consumption, full color, passive‐ and active‐matrix (both polysilicon and amorphous‐silicon backplane technologies) OLED displays.  相似文献   

20.
Abstract— A novel method for the fabrication of ink‐jet‐printed organic light‐emitting‐diode devices is discussed. Unlike previously reported solution‐processed OLED devices, the emissive layer of OLED devices reported here does not contain polymeric materials. The emission of the ink‐jet‐printed P2OLED (IJ‐P2OLED) device is demonstrated for the first time. It shows good color and uniform emission although it uses small‐molecule solution. Ink‐jet‐printed green P2OLED devices possess a high luminous efficiency of 22 cd/A at 2000 cd/m2 and is based on phosphorescent emission. The latest solution‐processed phosphorescent OLED performance by spin‐coating is disclosed. The red P2OLED exhibits a projected LT50 of >53,000 hours with a luminous efficiency of 9 cd/A at 500 cd/m2. The green P2OLED shows a projected LT50 of >52,000 hours with a luminous efficiency of 35 cd/A at 1000 cd/m2. Also discussed is a newly developed sky‐blue P2OLED with a projected LT50 of >3000 hour and a luminous efficiency of 18 cd/A at 500 cd/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号