首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A continuous‐viewing‐angle‐controllable liquid‐crystal display (LCD) using a blue‐phase liquid crystal is proposed. To realize both wide‐viewing‐angle (WVA) mode and narrow‐viewing‐angle (NVA) mode with a single liquid‐crystal panel, each pixel is divided into a main pixel and a subpixel. The main pixel is for displaying images in both modes. The subpixel is for displaying images in WVA mode and controlling the viewing angle in NVA mode. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

2.
A transflective blue‐phase liquid crystal display (TRBP‐LCD) based on fringe in‐plane switching (FIS) electrodes is proposed. The proposed structure generates combined fringe and in‐plane electric fields that cause more liquid crystal (LC) molecules to reorient almost in plane above and between the pixel electrodes. The fringe field is mainly generated in the transmissive (T) region, and the horizontal electric field is mainly generated in the reflective (R) region. By optimizing the width of the pixel electrodes and the gap between two adjacent pixel electrodes, the different electric field intensity in the T and R regions contribute to balance the optical phase retardation between the T and R regions. As a result, the proposed TRBP‐LCD exhibits a low operating voltage and high optical efficiency, while it preserves a relatively simple fabrication process.  相似文献   

3.
Abstract— A viewing‐angle‐controllable liquid‐crystal display (LCD) is proposed. When the device is only driven by an in‐plane electric field, it exhibits a wide‐viewing‐angle (WVA) mode. And it exhibits narrow‐viewing‐angle (NVA) mode when it is driven by a vertical electric field as well as an in‐plane electric field. In this manner, the viewing angle of the device can be controlled from 100° to 30°. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

4.
A polarization modulated directional backlight autostereoscopic display is proposed and demonstrated. The system consists of the orthogonally polarized backlight, the Fresnel lens array, a light shaping diffuser film, and a liquid crystal display (LCD) with a microphase retardation film. The autostereoscopic image pair carried by the directional light with different polarization directions is simultaneously projected to different spatial directions. The simulation and experimental results show that the directional projection of parallax images is realized for a high-quality autostereoscopic display with large viewing angle and continuous viewing volume, hence making it suitable for practical applications.  相似文献   

5.
Abstract— Cholesteric liquid crystals automatically form one‐dimensional photonic crystals. For a photonic crystal in which light‐emitting moieties are embedded, unique properties such as microcavity effects and simultaneous light emission and light reflection can be expected. Three primary‐color photonic‐crystal films were prepared based on cholesteric liquid crystal in which fluorescent dye is incorporated. Microcavity effects, i.e., emission enhancement and spectrum narrowing, were observed. Two types of demonstration liquid‐crystal displays (LCDs) were fabricated using the prepared photonic‐crystal films in a backlight system. One is an area‐color LCD in which a single photonic‐crystal layer is used for each color pixel and the other is a full‐color TFT‐LCD in which three stacked photonic‐crystal layers are used as light‐conversion layers. The area‐color LCD was excited by using 365‐nm UV light, and the full‐color TFT‐LCD was excited by using 470‐nm blue LED light. Because of the photonic crystal's unique features that allow it to work as light‐emitting and light‐reflecting layers simultaneously, both LCDs demonstrate clear readable images even under strong ambient light, such as direct‐sunlight conditions, under which conventional displays including LCDs and OLED displays cannot demonstrate clear images. In particular, an area‐color LCD, which eliminated color filters, gives clear images under bright ambient light conditions even without backlight illumination. This fact suggests that a backlight system using novel photonic‐crystal layers will be suitable for energy‐efficient LCDs (e2‐LCDs), especially for displays designed for outdoor usage.  相似文献   

6.
Abstract— An autostereoscopic display based on dual‐directional light guides with a fast‐switching liquid‐crystal panel was designed and fabricated to provide better 3‐D perception with image qualities comparable to that of 2‐D displays. With two identical micro‐grooved light guides, each with a light‐controlled ability in one direction, two restricted viewing cones are formed to project pairs of parallax images to the viewer's respective eyes sequentially. Crosstalk of less than 10% located within ±8°–±30° and an LC response time of 7.1 msec for a 1.8‐in. LCD panel can yield acceptable 3‐D perceptions at viewing distance of 5.6–23 cm. Moreover, 2‐D/3‐D compatibility is provided in this module.  相似文献   

7.
Abstract— A transflective polymer‐stabilized blue‐phase liquid‐crystal display (BP‐LCD) with a corrugated electrode structure is proposed. To balance the optical phase retardation between the transmissive (T) and reflective (R) regions, two device structures are proposed. The first device structure has the same inclination angles but different cell gaps in the T and R regions. And the second device structure has the same cell gap but different inclination angles in the T and R regions. Both of the device structures can obtain well‐matched VT and VR curves. This display exhibits low operating voltage, high optical efficiency, and a wide viewing angle.  相似文献   

8.
Abstract— Field‐sequential‐color technology eliminates the need for color filters in liquid‐crystal displays (LCDs) and results in significant power savings and higher resolution. But the LCD suffers from color breakup, which degrades image quality and limits practical applications. By controlling the backlight temporally and spatially, a so‐called local‐primary‐desaturation (LPD) backlight scheme was developed and implemented in a 180‐Hz optically compensated bend (OCB) mode LCD equipped with a backlight consisting of a matrix of light‐emitting diodes (LEDs). It restores image quality by suppressing color breakup and saves power because it has no color filter and uses local dimming. A perceptual experiment was implemented for verification, and the results showed that a field‐sequential‐color display with a local‐primary‐desaturation backlight reduced the color breakup from very annoying to not annoying and even invisible.  相似文献   

9.
We propose a crosstalk‐free dual‐view integral imaging display. It is composed of a display panel, a barrier array, and a micro‐lens array. The central barrier is located at the vertical central axes of the display panel and the micro‐lens array to split the element image array and the viewing zone. Moreover, other barriers are located at the margins of the elemental images and corresponding micro‐lenses to eliminate the crosstalk. The lights emitting from the left and right half of the element image array are modulated by the left and right half of the micro‐lens array to reconstruct the right and left viewing zones, respectively. A prototype of the proposed dual‐view integral imaging display is developed, and good experimental results agree well with the theory.  相似文献   

10.
Abstract— A type of polymer‐stabilized blue‐phase liquid crystal, which can be used in a low‐temperature environment, is proposed. The blue‐phase range after polymerization was widened to more than 73°C, and the blue‐phase texture is very stable even at a temperature as low as ?35°C. The electro‐optical performances dependence on polymer concentration was investigated. The results indicate that the saturation voltage increases and the hysteresis enhances as the polymer concentration increases. The rise and decay times could reach as low as 391 and 789 μsec, respectively. Such material also shows good electro‐optical behavior at a temperature of ?35°C. In addition, the Kerr constant was tested under a uniformly distributed electric field to be 2.195 nm/V2 at room temperature and 2.077 nm/V2 at ?35°C. The Kerr constant tested under white‐light illumination was 1.975 nm/V2, which shows a small dispersion.  相似文献   

11.
Abstract— An autostereoscopic display that shows stereoscopic images with full‐panel resolution has been developed,1 but it has a problem in terms of unit size. To resolve this problem, a new directional backlight system was developed, and it was applied to a prototype autostereoscopic LCD. The backlight system has two light sources — one for the right eye and the another for the left eye — and an elliptically shaped mirror that controls the direction of light from the light sources. The LCD uses a field‐sequential method which re‐writes an image for one eye and one for the other eye at a frame rate of 120 Hz, and the light sources alternately blink in synchronization with each frame so that the LCD shows full‐panel‐resolution stereoscopic images without flicker. In this paper, the new backlight system is described. The backlight system is effective for large screen such as 23 in. on the diagonal. By using this backlight system, the prototype LCD achieved practible unit size, brightness over the entire screen, and cross‐talk.  相似文献   

12.
Holographic display technology can reconstruct the same images of the original objects exactly, which has played a more and more important role and become the goal of the three‐dimensional display. As liquid crystal devices can modulate the polarization state of light, they have been widely used in the holographic display to modulate the phase and amplitude of information. Among them, liquid crystal spatial light modulator and liquid crystal lens are two important devices in the holographic diffraction. In this paper, several liquid crystal devices have been introduced and the holographic display technologies based on these liquid crystal devices have been discussed. The merits and demerits of these technologies based on the liquid crystal devices have been analyzed, and the outlook of the holographic display is given in the end.  相似文献   

13.
A novel dual‐band ring coupler based on dual‐band phase inverter is proposed. And two types of dual‐band phase inverters (Type I and Type II) are designed in this article. The design method of dual‐band ring coupler is simpler than the traditional ways like replace the single‐band λ/4 transmission line with dual‐band λ/4 transmission line. Its main idea is replacing the wide‐band phase inverter with dual‐band phase inverter. Two dual‐band ring couplers (0.9/2.88 and 0.9/2.43 GHz) using the two types of dual‐band phase inverter, respectively, are simulated and measured. The measured results validate the proposed method.  相似文献   

14.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

15.
We propose a viewing angle switchable blue‐phase liquid crystal display with low voltage and high transmittance. In this device, in‐plane protrusions are used to lower operating voltage and improve the transmittance. Besides, the top electrode can control viewing angle of the proposed display. When no voltage is applied to the top electrode, the display shows wide viewing angle mode. On the contrary, this display shows narrow viewing angle mode. So, this device exhibits low operating voltage, high transmittance, and good viewing angle controllable characteristics.  相似文献   

16.
Abstract— We theoretically modeled the optical plasmon absorption of anisotropic metallic nanoparticles in a liquid‐crystal host medium. Metallic nanorods and spheroids act as pleochroic dopants with virtually unlimited photostability. Calculations predict that full‐color displays based on nanorod orientation driven by the transition from homogeneous to homeotropic LC alignment are feasible. These displays are expected to have large viewing angles without the need for polarizers or LC anchoring surfaces.  相似文献   

17.
Abstract— A dual‐cell‐gap transflective liquid‐crystal display (TR‐LCD) with identical response time in both the transmissive and reflective regions is demonstrated. In the transmissive region, strong anchoring energy is used to decrease the response time, while in the reflective region, weak anchoring energy is used to increase the response time. And overdrive voltage technology is adopted to make the response time identical in both the transmissive and reflective regions. The device structure and operating principle of the TR‐LCD was analyzed, the anchoring energy in the transmissive and reflective regions was designed, and the response time and electro‐optic characteristics of the TR‐LCD was calculated. The simulated dual‐cell‐gap TR‐LCD demonstrated good performances.  相似文献   

18.
A 4.4‐inch 2D/3D switchable full high definition (FHD) six‐view 3D display with 3D resolution greater than 170 ppi has been accomplished. In addition to adopting low temperature polysilicon technology (LTPS), which is most suitable for high resolution displays, a new RGBW pixel arrangement using four‐square sub‐pixels has been devised. In 2D, a resolution greater than 500 ppi, accompanied with high luminance, has been achieved. A new liquid crystal lens (LCL) has been exploited for 2D/3D switching. By employing a special multielectrode structure and dedicated manufacturing process, an optical focal ratio less than 20%, which is essential for low 3D cross talk for a six‐view 3D display, has been attained by adopting the LCL. In the vertical direction of the display, there is no cross talk increase when the viewing position is changed because of the new pixel structure. The strong focal strength of the LCL combined with a revised high‐density multi‐view design give rise to a wide 3D viewing angle greater than 20 degrees in the horizontal direction and minimum cross talk less than 10%.  相似文献   

19.
Abstract— A 3‐m‐length black/white bistable cholesteric liquid‐crystal display was made by a roll‐to‐roll process and the display area is 25 × 300 cm. The black/white performance was made by black nano‐pigment and blended ChLC droplets with different wavelengths. It was written by a thermal‐addressing system, realizing high resolution and low cost.  相似文献   

20.
Abstract— A reflective polarizer‐free display using dye‐doped polymer‐stabilized blue‐phase liquid crystal (DDPSBP‐LC) has been demonstrated. The mechanism is a combination of electrically tunable light absorption and Bragg reflection. In this paper, the influence of light absorption in DDPSBP‐LC by changing the dye concentration and absorption paths has been studied. Increased dye concentration can improve the contrast ratio of DDPSBP‐LC; however, the response time is the tradeoff. Increasing the cell gap can improve the contrast ratio of DDPSBP‐LC; however, the response time remains the same. The study of DDPSBP‐LC can help in shutter‐glass applications of 3‐D displays and electronic paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号