首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the interaction between coplanar square cracks by combining the moving least‐squares (MLS) approximation and the derived boundary integral equation (BIE). A new traction BIE involving only the Cauchy singular kernels is derived by applying integration by parts to the traditional boundary integral formulation. The new traction BIE can be directly applied to a crack surface and no displacement BIE is necessary because all crack boundary conditions (both upper and lower ones) are incorporated. A boundary element‐free method is then developed by combining the derived BIE and MLS approximation, in which the crack opening displacement is first expressed as the product of weight functions and the characteristic terms, and the unknown weight is approximated with the MLS approximation. The efficiency of the developed method is tested for isotropic and transversely isotropic media. The interaction between two and three coplanar square cracks in isotropic elastic body is numerically studied and the case of any number of coplanar square cracks is deduced and discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A multidomain boundary element formulation for the analysis of general two-dimensional plane strain/stress crack problems is presented. The numerical results were accurate and efficient. The analyses were performed using traction singular quater-point boundary elements on each side of the crack tip(s) with and without transition elements. Traction singular quarter-point boundary elements contain the correct √r displacement and 1/√r traction variations at the crack tip. Transition elements are appended to the traction singular elements to model the √r displacement variation. The 1/√r traction singularity is not represented with these elements. Current research studies for the crack propagation analysis of quasi-static and fatigue fracture problems are discussed.  相似文献   

3.
A new formulation of the boundary element method (BEM) is proposed in this paper to calculate stress intensity factors for cracked 2-D anisotropic materials. The most outstanding feature of this new approach is that the displacement and traction integral equations are collocated on the outside boundary of the problem (no-crack boundary) only and on one side of the crack surfaces only, respectively. Since the new BEM formulation uses displacements or tractions as unknowns on the outside boundary and displacement differences as unknowns on the crack surfaces, the formulation combines the best attributes of the traditional displacement BEM as well as the displacement discontinuity method (DDM). Compared with the recently proposed dual BEM, the present approach doesn't require dua elements and nodes on the crack surfaces, and further, it can be used for anisotropic media with cracks of any geometric shapes. Numerical examples of calculation of stress intensity factors were conducted, and excellent agreement with previously published results was obtained. The authors believe that the new BEM formulation presented in this paper will provide an alternative and yet efficient numerical technique for the study of cracked 2-D anisotropic media, and for the simulation of quasi-static crack propagation.  相似文献   

4.
Straight and curved cracks are modelled by direct formulation boundary elements, of geometry defined by Hermitian cubic shape functions. Displacement and traction are interpolated by the Hermitian functions, supplemented by singular functions which multiply stress intensity factors corresponding to the dominant modes of crack opening in which displacement is proportional to the square root of distance r from the crack tip, and subdominant modes in which it is proportional to r1·5. The singular functions extend over many boundary elements on each crack face. A nodal collocation scheme is used, in which additional boundary integral equations are obtained by differentiation of the equation obtained from Betti's theorem. The hypersingular kernels of the equations so derived are integrated by consideration of trial displacement fields of subdomains lying to either side of the crack. Examples are shown of the analysis of buried and edge cracks, to demonstrate the effects of modelling subdominant modes and extending singular shape functions over many elements.  相似文献   

5.
In this paper, the conventional boundary integral equation (BIE) formulation for piezoelectric solids is revisited and the related issues are examined. The key relations employed in deriving the piezoelectric BIE, such as the generalized Green's identity (reciprocal work theorem) and integral identities for the piezoelectric fundamental solution, are established rigorously. A weakly singular form of the piezoelectric BIE is derived for the first time using the identities for the fundamental solution, which eliminates the calculation of any singular integrals in the piezoelectric boundary element method (BEM). The crucial question of whether or not the piezoelectric BIE will degenerate when applied to crack and thin shell-like problems is addressed. It is shown analytically that the conventional BIE for piezoelectricity does degenerate for crack problems, but does not degenerate for thin piezoelectric shells. The latter has significant implications in applications of the piezoelectric BIE to the analysis of thin piezoelectric films used widely as sensors and actuators. Numerical tests to show the degeneracy of the piezoelectric BIE for crack problems are presented and one remedy to this degeneracy by using the multi-domain BEM is also demonstrated.  相似文献   

6.
N. Ghosh  S. Mukherjee 《Acta Mechanica》1987,67(1-4):107-119
Summary A new boundary element method (BEM) formulation for planar problems of linear elasticity has been proposed recently [6]. This formulation uses a kernel which has a weaker singularity relative to the corresponding kernel in the standard formulation. The most important advantage of the new formulation, relative to the standard one, is that it delivers stresses accurately at internal points that are extremely close to the boundary of a body. A corresponding BEM formulation for three dimensional problems of linear elasticity is presented in this paper. This formulation is derived through the use of Stokes' theorem and has kernels which are only 1/r singular (wherer is the distance between a source and a field point) for the displacement equation. The standard BEM formulation for three-dimensional elasticity problems has a kernel which is 1/r 2 singular.With 2 Figures  相似文献   

7.
An original approach to the numerical solution of displacement boundary integral equation (BIE) and traction hypersingular boundary integral equation (HBIE) by the boundary element method (BEM) for contact problems is given. The main point is to show, how the contact conditions are used to formulate the first-kind and the second-kind BIE systems in the case of frictionless two-body elastic contact. The solution of the first-kind BIE is performed by symmetric Galerkin BEM; the second-kind BIE is solved by an appropriate collocation BEM. The contact problem in itself is solved by the method of subsequent approximations of contact region. Both forms of BIE system are compared in several numerical examples. This comparison is made for different kinds of contact problem. The major emphasis is put on the evaluation of contact pressure. The obtained results are compared with referenced numerical and with the analytical ones.  相似文献   

8.
Wave propagation in the presence of empty cracks in an elastic medium   总被引:1,自引:0,他引:1  
This paper proposes the use of a traction boundary element method (TBEM) to evaluate 3D wave propagation in unbounded elastic media containing cracks whose geometry does not change along one direction. The proposed formulation is developed in the frequency domain and handles the thin-body difficulty presented by the classical boundary element method (BEM). The empty crack may have any geometry and orientation and may even exhibit null thickness. Implementing this model yields hypersingular integrals, which are evaluated here analytically, thereby surmounting one of the drawbacks of this formulation. The TBEM formulation enables the crack to be modelled as a single line, allowing the computation of displacement jumps in the opposing sides of the crack. Furthermore, if this formulation is combined with the classical BEM formulation the displacements in the opposing sides of the crack can be computed by modelling the crack as a closed empty thin body.  相似文献   

9.
The paper deals with the numerical solution techniques for the traction boundary integral equation (BIE), which describes the opening (and sliding) displacements of the surface of the traction loaded crack or arbitrary planform embedded in an elastic infinite body (buried crack problem). The traction BIE is a singular integral equation of the first kind for the displacement gradients. Its solution poses a number of numerical problems, such as the presence of derivatives of the unknown function in the integral equation, the modeling of the crack front displacement gradient singularity, and the regularization of the equation's singular kernels. All of the above problems have been addressed and solved. Details of the algorithm are provided. Numerical results of a number of crack configurations are presented, demonstrating high accuracy of the method.  相似文献   

10.
A dual boundary integral equation (BIE) formulation is presented for the analysis of general 3‐D electrostatic problems, especially those involving thin structures. This dual BIE formulation uses a linear combination of the conventional BIE and hypersingular BIE on the entire boundary of a problem domain. Similar to crack problems in elasticity, the conventional BIE degenerates when the field outside a thin body is investigated, such as the electrostatic field around a thin conducting plate. The dual BIE formulation, however, does not degenerate in such cases. Most importantly, the dual BIE is found to have better conditioning for the equations using the boundary element method (BEM) compared with the conventional BIE, even for domains with regular shapes. Thus the dual BIE is well suited for implementation with the fast multipole BEM. The fast multipole BEM for the dual BIE formulation is developed based on an adaptive fast multiple approach for the conventional BIE. Several examples are studied with the fast multipole BEM code, including finite and infinite domain problems, bulky and thin plate structures, and simplified comb‐drive models having more than 440 thin beams with the total number of equations above 1.45 million and solved on a PC. The numerical results clearly demonstrate that the dual BIE is very effective in solving general 3‐D electrostatic problems, as well as special cases involving thin perfect conducting structures, and that the adaptive fast multipole BEM with the dual BIE formulation is very efficient and promising in solving large‐scale electrostatic problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A model of 2D SH ultrasonic nondestructive testing for interior strip-like cracks near a non-planar back surface in a thick-walled elastic solid is presented. The model employs a Green's function to reformulate the 2D antiplane wave scattering problem as two coupled boundary integral equations (BIE): a displacement BIE for the back surface displacement and a hypersingular traction BIE for the crack opening displacement (COD). The integral equations are solved by performing a boundary element discretization of the back surface and expanding the COD in a series of Chebyshev functions which incorporate the correct behaviour at the crack edges. The transmitting ultrasonic probe is modelled by prescribing the traction underneath it, enabling the consequent calculation of the incident field. An electromechanical reciprocity relation is used to model the action of the receiving probe. A few numerical examples which illustrate the influence of the non-planar back surface are given.  相似文献   

12.
A simple, yet accurate 2-D boundary integral equation (BIE) for determining the T-stress for cracks of arbitrarily geometry is introduced in this paper. The formulation is based upon the asymptotic expansion for the stress field in the vicinity of a crack tip. It can be conveniently implemented in the post-processing stage of a boundary element fracture analysis. As demonstrated in this work, the proposed BIE is non-singular, and thus it can directly be collocated at the crack tip under consideration. The technique requires a similar computational effort as that used in calculating the stress components at an interior point of a domain. Consequently, this new approach is very computationally effective and accurate for evaluating the elastic T-stress. Five test examples, involving straight, kink and curved cracks, are studied to validate the proposed technique and to assess its accuracy.  相似文献   

13.
General two-dimensional linear elastic fracture problems are investigated using the boundary element method. The √r displacement and 1/√r traction behaviour near a crack tip are incorporated in special crack elements. Stress intensity factors of both modes I and II are obtained directly from crack-tip nodal values for a variety of crack problems, including straight and curved cracks in finite and infinite bodies. A multidomain approach is adopted to treat cracks in an infinite body. The body is subdivided into two regions: an infinite part with a finite hole and a finite inclusion. Numerical results, compared with exact solution whenever possible, are accurate even with a coarse discretization.  相似文献   

14.
This work contains an analytical study of the asymptotic near‐crack contour behaviour of stresses obtained from the self‐regular traction‐boundary integral equation (BIE), both in two and in three dimensions, and for various crack displacement modes. The flat crack case is chosen for detailed analysis of the singular stress for points approaching the crack contour. By imposing a condition of bounded stresses on the crack surface, the work shows that the boundary stresses on the crack are in fact zero for an unloaded crack, and the interior stresses reproduce the known inverse square root behaviour when the distance from the interior point to the crack contour approaches zero. The correct order of the stress singularity is obtained after the integrals for the self‐regular traction‐BIE formulation are evaluated analytically for the assumed displacement discontinuity model. Based on the analytic results, a new near‐crack contour self‐regular traction‐BIE is proposed for collocation points near the crack contour. In this new formulation, the asymptotic log‐singular stresses are identified and extracted from the BIE. Log‐singular stress terms are revealed for the free integrals written as contour integrals and for the self‐regularized integral with the integration region divided into sub‐regions. These terms are shown to cancel each other exactly when combined and can therefore be eliminated from the final BIE formulation. This work separates mathematical and physical singularities in a unique manner. Mathematical singularities are identified, and the singular information is all contained in the region near the crack contour. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The paper describes a hybrid experimental-numerical technique for elastoplastic crack analysis. It consists of the experimental surface spectrum measurement of plastic strains ahead the crack tip and the boundary element method (BEM). The light scattering method is used to measure the power density spectrum from which the values of plastic strains are obtained by comparison with a calibration experiment on the same material. Plastic strains obtained experimentally are conveniently used for the calculation of unknown boundary displacement or traction vectors by the boundary element method. Instead of an iterative solution of the boundary integral equations in pure numerical solution, the boundary unknowns are computed once for a required loading level. Also asymptotic distribution of strains or stresses is not needed in the evaluation of the domain integral for the BEM formulation in the vicinity of the crack tip. Significant CPU time saving is achieved in comparison with the pure BEM solution. The method presented is illustrated by the example for a three point bending specimen with an edge crack.  相似文献   

17.
The problem of interactions between an inclusion and multiple cracks in a thermopiezoelectric solid is considered by boundary element method (BEM) in this paper. First of all, a BEM for the crack–inclusion problem is developed by way of potential variational principle, the concept of dislocation, and Green's function. In the BE model, the continuity condition of the interface between inclusion and matrix is satisfied, a priori, by the Green's function, and not involved in the boundary element equations. This is then followed by expressing the stress and electric displacement (SED) and elastic displacements and electric potential (EDEP) in terms of polynomials of complex variables ξt and ξk in the transformed ξ‐plane in order to simulate SED intensity factors by the BEM. The least‐squares method incorporating the BE formulation can, then, be used to calculate SED intensity factors directly. Numerical results for a piezoelectric plate with one inclusion and a crack are presented to illustrate the application of the proposed formulation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes a coupling formulation between the boundary element method (BEM displacement and TBEM traction formulations) and the method of fundamental solutions (MFS) for the transient analysis of elastic wave propagation in the presence of multiple elastic inclusions to overcome the specific limitations of each of these methods. The full domain of the original problem is divided into sub-domains, which are handled separately by the BEM or the MFS. The coupling is enforced by imposing the required boundary conditions.The accuracy, efficiency and stability of the proposed algorithms, using different combinations of BEM and MFS, are verified by comparing the solutions against reference solutions. The computational efficiency of the proposed coupling formulation is illustrated by computing the CPU time and the error at high frequencies.The potential of the proposed procedures is illustrated by simulating the propagation of elastic waves in the vicinity of an empty crack, with null thickness placed close to an elastic inclusion.  相似文献   

19.
In this paper the extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elastoplastic behaviour is modelled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral and/or triangular cells. This formulation was implemented for two-dimensional domains only, although there is no theoretical or numerical limitation to its application to three-dimensional ones. A centre-cracked plate and a slant edge-cracked plate subjected to tensile load are analysed and the results are compared with others available in the literature. J-type integrals are calculated.  相似文献   

20.
This study concerns the development of a coupled finite element–boundary element analysis method for the solution of thermoelastic stresses in a domain composed of dissimilar materials with geometric discontinuities. The continuity of displacement and traction components is enforced directly along the interfaces between different material regions of the domain. The presence of material and geometric discontinuities are included in the formulation explicitly. The unknown interface traction components are expressed in terms of unknown interface displacement components by using the boundary element method for each material region of the domain. Enforcing the continuity conditions leads to a final system of equations containing unknown interface displacement components only. With the solution of interface displacement components, each region has a complete set of boundary conditions, thus leading to the solution of the remaining unknown boundary quantities. The concepts developed for the BEM formulation of a domain with dissimilar regions is employed in the finite element–boundary element coupling procedure. Along the common boundaries of FEM–BEM regions, stresses from specific BEM regions are first expressed in terms of interface displacements, then integrated and lumped at the nodal points of the common FEM–BEM boundary so that they are treated as boundary conditions in the analysis of FEM regions along the common FEM–BEM boundary. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号