首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing environment-friendly dual-emission phosphors of both blue–cyan and deep-red lights is desirable for the utilized indoor plant lighting research. Notably, the naked 6s and 6p Bi3+ ions are sensitive to the lattice sites, which emit from Ultraviolet (UV) to red lights in various crystal compounds. Meanwhile, the 2E → 4A2g transition of Mn4+ ions promises its deep-red light emissions, which satisfies the demand for specific wavelength lights for plants growth. Hence, a Bi3+/Mn4+ co-doped Sr2LaGaO5: Bi3+, Mn4+ (SLGO:Bi3+:Mn4+) phosphor was finally synthesized. The phase, micromorphology and luminescent properties were systematically evaluated. Upon excitation at 350 nm light, dual emissions of both blue–cyan (470 nm) and deep-red (718 nm) lights were observed. Besides, due to the pronounced photoluminescence (PL) spectral overlap between Bi3+ and Mn4+ ions, a potential energy transfer process from Bi3+ to Mn4+ ions was confirmed. The relative PL intensities between Bi3+ and Mn4+ ions can be tuned just by adjusting the Mn4+ ion concentration. Besides, Li+ co-doping has been evidenced to improve the deep-red emissions (718 nm) of SLGO:0.005Mn4+ due to charge compensation and rationally designed lattice distortion, together with the improved thermal stability. Finally, the emissions of SLGO:Bi3+, Mn4+, Li+ phosphor suit properly with the absorption of the four fundamental pigments for plant growth, indicating that the prepared phosphorescent materials may have a prospect in plant light-emitting diodes lighting.  相似文献   

2.
《Ceramics International》2023,49(1):579-590
A novel single-phase trivalent europium activated red-emitting SrLaNaTeO6 phosphor was first synthesized in a process of traditional high-temperature solid-state. The phase purity, morphology, and spectroscopy of the prepared phosphor were analyzed. Under 395 nm excitation, the photoluminescence (PL) spectra of the SrLaNaTeO6:Eu3+ products mainly contained five dominant sharp peaks. The intense red emission peak at 615 nm was the typical 5D07F2 electric dipole transition of Eu3+. The optimum product of high quenching concentration was the SrLaNaTeO6:0.90Eu3+, which reached a high internal quantum efficiency (IQE) of 90.6%. The SrLaNaTeO6:0.90Eu3+ was estimated to have Rc of 6.57 Å and possessed high color purity of 100.0%. The phosphors exhibited excellent thermal stability and high activation energy (Ea = 0.29 eV). The prepared white light-emitting diode (WLED) had a high color rendering index (CRI) Ra of 92 and a low correlated color temperature (CCT) of 5008 K. In conclusion, the phosphors have potential as red components for WLEDs.  相似文献   

3.
红色荧光粉YAl3(BO3)4:Eu3+的制备及发光性能研究   总被引:1,自引:0,他引:1  
以稀土氧化物、硝酸铝和硼酸为原料,高温固相反应制备了单相红色荧光粉YAl3(BO3)4:Eu3+,用X射线衍射和发射光谱对荧光粉末的结构和发光性能进行了分析.研究了煅烧温度、Eu3+掺杂量对其发光性能的影响.结果表明,反应物在1 250 ℃下煅烧可制得单相YAl3(BO3)4:Eu3+晶体,在YAl3(BO3)4:Eu3+晶体中,Eu3+取代了YAl3(BO3)4晶体中Y3+,占据了非对称中心格位.在394 nm的紫外光激发下,YAl3(BO3)4:Eu3+荧光粉具有很强的发光性能,与(Y,Gd)BO3:Eu3+荧光粉相比,最强发射线波长由596 nm变为618 nm,由橙红色光变为红色光,色纯度有了很大提高.Eu3+的最佳掺杂量为8%(物质的量分数).  相似文献   

4.
As for plants, far-red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light-controlled development depends on light to control cell differentiation, structural and functional changes, and finally converge into the formation of tissues and organs. Phosphor converted FR emission under LED excitation is a cost-effective and high-efficient way to provide artificial FR light source. With the aim to develop an efficient FR phosphor that can promote the plant growth, a series of gadolinium yttrium gallium garnet (GYGAG) transparent ceramic phosphors co-doped with Mn2+ and Si4+ have been fabricated via chemical co-precipitation method, followed sintered in O2 and hot isostatic pressing in this work. Under UV excitation, the phosphor exhibited two bright and broadband red emission spectra due to Mn2+: 4T1 → 6A1 spin-forbidden transition, and one of which located in the right FR region. And then, Ce3+ ions were co-doped as the activator to enhance the absorption at blue light region and the emission of Mn2+. It turns out that the emission band of GYGAG transparent ceramic phosphors matches well with the absorption band of phytochrome PFR, which means they are promising to be applied in plant cultivation light-emitting diodes (LEDs) for modulating plant growth. Besides, the thermal stability of this material was investigated systematically, and an energy transferring model involves defects was also proposed to explain the phenomenon of abnormal temperature quenching.  相似文献   

5.
An efficient and ultra-broadband red phosphor CsMg2P3O10: Mn2+ (CMPO: Mn2+) is first synthesized toward indoor plant growth LEDs. The phase purity, element composition, crystal, and local electronic structure are explored to discuss the structure and photoluminescence properties. Structure refinement and series X-ray diffractometer (XRD) results show that CMPO: Mn2+ is well crystallized in an orthogonal crystal system. The diffuse reflection and excitation spectra show that CMPO: Mn2+ has strong absorption around near ultraviolet region, assigned to the [6A14E(4D), 4T2(4D), [4A1(4G), 4E(4G)], and 4T1(4G)] transitions of Mn2+, respectively. Upon 415 nm excitation, an efficient red emission centered at 647 nm with ultra-broad full width at half-maximum (FWHM ∼ 100 nm) and high quantum efficiency (IQE ∼ 44.3 %) is observed, and because of the ultra-broad FWHM, the red emission is well accordant with the absorption spectra band of phytochrome PR and PFR. The optimal doping contents, lifetime as well as interaction mechanism of CMPO: Mn2+ are discussed in detail. Finally, the excellent thermal stability (84.5% @ 140°C) and related thermal quenching mechanism of CMPO: Mn2+ are discussed. The above results indicate that CMPO: Mn2+ phosphors have great potential for application in plant growth LEDs.  相似文献   

6.
A series of Ce3+ and Tb3+ singly- and co-doped NaBa4(AlB4O9)2Cl3 (NBAC) phosphors have been synthesized via high-temperature solid state route. The crystal structure, morphology, photoluminescent properties, thermal properties and energy transfer process between Ce3+ and Tb3+ were systematically investigated. The structure refinements indicated that the phosphors based on NBAC crystallized in P42nm polar space group in monoclinic phase. The emission color could be tuned from blue (0.1595, 0.0955) to green (0.2689, 0.4334) via changing the ratio of Ce3+/Tb3+. The energy transfer mechanism of Ce3+/Tb3+ was verified to be dipole–quadrupole interaction via the examination of decay times of Ce3+ based on Dexter's theory. The good thermal stability showed the intensities of Ce3+ at 150°C were about 66.9% and 64.88% in NBAC:0.09Ce3+ and NBAC:0.09Ce3+, 0.07Tb3+ of that at room temperature, and the emission intensities of Tb3+ remained 102.41% in NBAC:0.11Tb3+ and 95.22% in NBAC:0.09Ce3+, 0.07Tb3+ due to the nephelauxetic shielding effect and the highly asymmetric rigid framework structure of NBAC. The maximum external quantum efficiency (EQE) of Ce3+ in NBAC:0.09Ce3+, yTb3+ phosphors could reach 43.38% at y = 0.13. Overall, all the results obtained suggested that NBAC:Ce3+, Tb3+ could be a promising option for n-UV pumped phosphors.  相似文献   

7.
The exploration of the high thermal stability near-infrared (NIR) phosphors is significantly crucial for the development of plant lighting. However, NIR phosphors suffer from the poor chemical and thermal stability, which severely limits their long-term operation. Here, the successful improvement of luminous intensity (149.5%) and thermal stability at 423 K of Zn3Ga2GeO8 (ZGGO): Cr3+ phosphors is achieved for the introduction of Al3+ ions into the host. The release of carriers in deep traps inhibits the emission loss for the thermal disturbance. Furthermore, an NIR light emitting diodes (LEDs) lamp is explored by combining the optimized Zn3Ga1.1675Al0.8GeO8: 0.0325Cr3+ phosphors with a commercial 460 nm blue chip, and the emission band can match well with the absorption bands of photosynthetic pigments and the phytochrome (PR and PFR) of plants. The explored LEDs lamp further determines the growth and the pheromone content of the involved plants for the participation of the NIR emission originated from Cr3+ ions. Our work provides a promising NIR lamp as plant light with improved thermal stability for long-term operation.  相似文献   

8.
To enhance the display quality of light-emitting diodes (LEDs), it is of great significance to exploit green/yellow-emitting phosphors with narrow emission band, high quantum yield, and excellent color purity to satisfy the application. Herein, orthophosphate-based green/yellow-emitting Na3Tb(PO4)2:Ce3+/Eu2+ (NTPO:Ce3+/Eu2+) phosphors have been successfully synthesized by a facile solid-state reaction method. The absorption band of NTPO samples was extended to the near-ultraviolet region and the absorption efficiency was significantly improved owing to a highly efficient energy transfer from Ce3+/Eu2+ ion to Tb3+ ion in NTPO host certified by time-resolved PL spectra. Upon 300 nm excitation, the NTPO:Ce3+ is characterized by ultra-narrow-band green emission of Tb3+ with an absolute quantum yield of 94.5%. Unexpectedly, NTPO:Eu2+ emits bright yellow light with a color purity of 73% as a result of the blending of green light emission from Tb3+ and red light emission from Eu3+. The thermal stability has been improved by controlling the stoichiometric ratio of Na+. The prototype white LED used yellow-emitting NTPO:Eu2+ phosphor has higher color-rendering index (Ra = 83.5), lower correlated color temperature (CCT = 5206 K), and closer CIE color coordinates (0.338, 0.3187) to the standard white point at (0.333, 0.333) than that used green-emitting NTPO:Ce3+ phosphor, indicating the addition of the yellow light component improved the Ra of the trichromatic (RGB) materials.  相似文献   

9.
LiCaAlN2:Eu3+/Tb3+ red/green phosphors were successfully prepared by conventional solid‐state reaction. The photoluminescence (PL) properties and cathodoluminescence (CL) properties of LiCaAlN2:Eu3+/Tb3+ were investigated in detail. The Eu3+ (Tb3+) doped LiCaAlN2 shows red (green) emission peaking at 615 nm (550 nm). Monitored at 615 nm (550 nm), it is interesting to found that LiCaAlN2:Eu3+ (LiCaAlN2:Tb3+) has a broad charge transfer transition in the range of 350‐450 nm (275‐375 nm) peaking at 380 nm (343 nm), which can be efficiently excited by n‐UV light‐emitting diodes (LEDs). Under electron beam excitation, LiCaAlN2:Tb3+ exhibited a good resistance to the current saturation. The white LED has also been fabricated with blue, green, and LiCaAlN2:Eu3+ red phosphor. The results indicate that LiCaAlN2:Eu3+/Tb3+ could be conducive to the development of phosphor‐converted LEDs and field emission displays (FEDs).  相似文献   

10.
Owing to the conventional phosphor-converted white LEDs (pc-WLEDs) generally suffer from blue-green cavity, thus, developing an appropriate phosphors covering both the blue and green regions in their emission spectra are very urgent. Herein, a novel Sc silicate phosphor, KBaScSi2O7:Eu2+ (KBSS:Eu2+), has been successfully designed and prepared via a solid-state reaction. The crystal structure, luminescent properties, thermal quenching, quantum efficiency as well as its application in UV-pumped WLEDs have been investigated systematically. The KBSS:Eu2+ phosphor exhibits a strong and broad excitation band ranging from 290 to 450 nm, and gives a sufficient cyan emission of 488 nm with a full-width half-maximum (FWHM) of 70 nm, which filled the blue-green cavity. Importantly, the optimized KBSS:Eu2+ phosphor possesses an ultrahigh quantum efficiency (QE) up to 91.3% and an excellent thermal stability retaining 90% at 423 K with respect to that measured at room temperature. Finally, the as-fabricated UV-based WLEDs device, with only coupled the mixture of KBSS:Eu2+ cyan phosphor and CaAlSiN3:Eu2+ red ones to a commercial 365nm UV chip, exhibits a satisfactory color-rendering index (Ra = 88.6), correlated color temperature (CCT = 3770K), and luminous efficiency (LE = 21 lm/W).  相似文献   

11.
Single‐phase KLaSr3(PO4)3F: Sm3+ phosphors with fluorapatite structure were prepared via high‐temperature solid‐state method in air atmosphere for the first time. The X‐ray diffraction, scanning electron microscope, diffuse reflectance spectra, photoluminescence spectra, and temperature‐dependent emission spectra, as well as lifetimes were measured to characterize the as‐prepared phosphors. Phase results indicated that KLaSr3(PO4)3F: Sm3+ belongs to hexagonal system with a space group of P‐6. Photoluminescence measurements showed the emission spectrum was composed of four sharp peaks at about 564, 602 (the strongest one), 646, and 702 nm, corresponding to the 4G5/26HJ (J=5/2, 7/2, 9/2, and 11/2) transitions of Sm3+ ions. The optimum doping concentration of Sm3+ ions was turned out to be 0.03 (mol), and the mechanism of energy transfer among Sm3+ ions was considered to be dipole‐dipole interaction by using Dexter's theory. In addition, the critical distance Rc for energy transfer among Sm3+ ions were calculated to be 9.97 Å according to Blasse concentration quenching method. The selected KLa0.97Sr(PO4)3F: 0.03Sm3+ exhibited high thermal stability with an activation energy of 0.163 eV. Besides, the Commission International de l'Eclairage chromaticity coordinate of the phosphor were located in the orange‐reddish light region.  相似文献   

12.
《Ceramics International》2023,49(10):15402-15412
A series of Ca2GdNbO6: xSm3+ (0.01 ≤ x ≤ 0.15) and Ca2GdNbO6: 0.03Sm3+, yEu3+ (0.05 ≤ y ≤ 0.3) phosphors were synthesized by the traditional solid-state sintering process. XRD and the corresponding refinement results indicate that both Sm3+ and Eu3+ ions are doped successfully into the lattice of Ca2GdNbO6. The micro-morphology shows that the elements of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor are evenly distributed in the sample, and the particle size is about 2 μm. The optical properties and fluorescence lifetime of Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors were detailedly studied. The emission peak at 5D07F2 (614 nm) is the strongest and emits red light under 406 nm excitation. The increase of Eu3+ concentration causes the energy transfers from Sm3+ to Eu3+ ions, and the transfer efficiency reaches 28.6%. Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor has a quantum yield of about 82.7%, and thermal quenching activation energy is of 0.312 eV. The color coordinate (0.646, 0.352) of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphors is located in the red area. The LED device fabricated based on the above phosphor emit bright white light, and CCT = 5400 K, Ra = 92.8. The results present that Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors potentially find use in the future.  相似文献   

13.
Novel dual valence Eu-doped Ca4ZrGe3O12 (CZGO) phosphors were successfully fabricated in air atmosphere through a solid-state route. Their crystal structure, photoluminescence properties as well as thermal quenching performance were investigated systematically. The spectra show that part of Eu3+ were reduced to Eu2+ and the mechanism is interpreted by the charge compensation. By altering Eu concentration, multi-color luminescence covering from blue to red is realized when irradiated by 370 nm light, which perfectly matches with the near ultraviolet (NUV) light-emitting diode (LED) chips. More importantly, under NUV excitation, luminescent intensities are almost unchanged even up to 423 K. And chromaticity exhibits only a tiny shift with growing temperature. Such suitable luminescent spectra and superior thermal stability indicate that CZGO:Eu phosphors are promising candidates for blue-red components in NUV pumped W-LEDs. Finally, the fabricated W-LED based on the combination of CZGO:Eu phosphors, Ba2SiO4:Eu2+ and a 365 nm NUV-LED chip gives a high color rendering index, a low correlated color temperature and suitable CIE chromaticity coordinates.  相似文献   

14.
《Ceramics International》2023,49(15):24972-24980
Phosphor-converted light-emitting diodes (pc-LEDs) are commonly used to regulate the light environment to control the growth rates and improve the production efficiency of plant. Among them, the exploration of blue-emitting phosphors with high efficiency, low thermal quenching and excellent spectrum resemblance matching with the plant response spectrum is still challenging. Herein, a narrow-band blue-emitting Rb2Ba3(P2O7)2:Eu2+ phosphor with high color purity of 93.4% has been developed. Under 345 nm excitation, it exhibits a blue emission band centered at 413 nm with a full width at half-maximum (FWHM) of 36 nm, and the emission spectrum of Rb2Ba3(P2O7)2:0.060Eu2+ sample shows 85.7% spectrum resemblance with the absorption spectrum of chlorophyll-a in the blue region from 400 to 500 nm. In addition, the temperature-dependent emission spectra demonstrate that the Rb2Ba3(P2O7)2:0.060Eu2+ phosphor has good thermal stability and small chromaticity shift, with the emission intensity dropping to 72.5% at 423 K of the initial intensity at 298 K and a chromaticity shift of 38 × 10-3 at 498 K. All results suggest that the blue-emitting Rb2Ba3(P2O7)2:Eu2+ phosphor has potential application in plant growth LEDs.  相似文献   

15.
《Ceramics International》2022,48(1):387-396
Compared with oxide-based NIR phosphors, fluoride phosphors have received great attention recently due to their good thermal resistance and high photoelectric efficiency. In this work, novel LiBAlF6:Cr3+ (B = Ca, Sr) with low phonon energy and relatively weak electron-phonon coupling were synthesized through a facile hydrothermal approach. Benefiting from low Dq/B, an ultra-broad NIR emission extending from 650 nm to 1100 nm can be achieved in these phosphors under excitation of blue light. Among them, LiSrAlF6:Cr3+ presents a FWHM of 155 nm. At 423 K, LiCaAl0.4F6: 0.6Cr3+ and LiSrAl0.4F6: 0.6Cr3+ maintain 66.63% and 55.47% of their initial intensities, respectively. Better thermal stability of LiCaAlF6: Cr3+ could be attributed to the broad band gap and weak electron-phonon coupling effect. Photoelectric conversion efficiencies of 5.002% and 5.468% at 300 mA could be obtained for NIR pc-LEDs packaged with LiCaAl0.4F6: 0.6Cr3+ and LiSrAl0.4F6: 0.6Cr3+, respectively. A slightly internal bruise inside apple and water level behind trademark in bottle could be clearly detected, revealing that LiBAlF6:Cr3+ (B = Ca, Sr) phosphors have great application potential in infrared inspection.  相似文献   

16.
Mn4+-activated double-perovskite type Ca2ScSbO6 (CSS) phosphors were synthesized via a high-temperature solid-state reaction. The phase purity and crystal structure of obtained samples were investigated by powder X-ray diffraction (XRD). The successful incorporation of Mn4+ ions into CSS lattice was confirmed by the combination of energy-dispersive X-ray spectra (EDX) and X-ray photoelectron spectra (XPS) results. The luminescent properties of the CSS phosphors, including the photoluminescence (PL) and PL excitation (PLE) spectra, commission international de l'clairage (CIE) chromaticity coordinates, fluorescence decay curves, quantum yields and temperature-dependent PL spectra, were investigated in detail. Under 310-nm excitation, the optimized CSS:0.3%Mn4+ phosphor exhibited bright deep-red emission covering a narrow band from 640 nm to 720 nm, which overlaps with the absorbance of phytochromes. The Racah parameters B, C, and local crystal strength Dq were calculated to be 870, 2703, and 1984 cm–1, respectively. Particularly, the emission intensity of CSS:0.3%Mn4+ still remained 61.4% at 423 K compared with that at room temperature. Therefore, all these outstanding luminescent properties provided the as-synthesized phosphors a great potential in plant growth lighting.  相似文献   

17.
《Ceramics International》2023,49(20):33291-33304
This study focused on the thermoluminescence (TL) characteristics of YAl3(BO3)4 (YAB) phosphors modified with various contents of Sm3+ ions. The TL response of the YAB: Sm3+ phosphors exposed to beta irradiation was measured across the temperature range of 25–500 °C, exhibiting three TL maxima at 70, 235, and 408 °C. Preheating protocol was also carried out to remove the low temperature TL peak followed by further experiments with the two-remaining high-temperature peaks. In the TL measurements conducted with variable heating rates (HR) between 0.1 and 5 °Cs-1, an anomalous heating rate behaviour was observed. A semi-localized transition model was used to address this feature. There was a standard deviation of less than 5% in the reusability measurements. The results of the kinetic parameters obtained by initial rise (IR) and various heating rate (VHR) methods were compared with those obtained by glow curve deconvolution (GCD) method. Tm-Tstop analysis revealed a continuous distribution of trap levels with a trap depth ranging from 1.35 to 2.20 eV. Through the use of GCD, the glow curve was found to demonstrate general order kinetics and consist of seven superimposed traps. The values of the kinetic parameters obtained for the glow curve agreed with those obtained by other methods excluding the VHR method encountering an anomalous impact. The results obtained from these tests showed that the sample could be successfully used for TL dosimetry applications.  相似文献   

18.
In this study, Sr2+, Ca2+, Zn2+, and Mg2+ ions act to tune the emission band to the blue-cyan region in BaxSryB2O5:Ce3+ (BSBO), BaxCazB2O5:Ce3+ (BCBO), BaxZnuB2O5:Ce3+ (BZBO), and BaxMgvB2O5:Ce3+ (BMBO) phosphors. A red shift occurs with the increase of Sr2+, Ca2+, Zn2+, and Mg2+ concentration, and a blue shift occurs when the concentrations of Sr2+, Ca2+, Zn2+, and Mg2+ exceed the critical value. The emission color can be tuned from deep blue (0.15, 0.12) to cyan (0.16, 0.27) upon 365 nm UV lamp excitation due to the crystal field splitting and centroid shifts. The excitation band shift to long wavelength by introducing ions, so that the synthesized phosphor can be better matched with the n-UV chip. The emission intensity slowly decreases with the temperature increasing. Therefore, the BMBO:Ce3+, BZBO:Ce3+, BCBO:Ce3+, and BSBO:Ce3+ phosphors with relatively good thermal stability were synthesized, which could have potential applications in the n-UV white LEDs.  相似文献   

19.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   

20.
In this study, Sm3+-doped double-perovskite Mg2InSbO6 phosphors were synthesized via high-temperature solid-state reaction. Mg2InSbO6 belongs to the double-perovskite family with a space group of R (No.148). The photoluminescence (PL) spectrum illustrates that Mg2InSbO6:0.05Sm3+ phosphor can emit intense orange-red emission light at 607 nm due to the 4G5/26H7/2 transition. The optimum concentration of Mg2InSbO6:xSm3+ is confirmed to 0.05 mol. The asymmetric ratio (4G5/26H9/2/4G5/26H5/2) of Mg2InSbO6:0.05Sm3+ phosphor is 2.73. The quenching temperature exceeds 500 K, illustrating that Mg2InSbO6:Sm3+ sample has excellent heat resistance. The high color purity and correlated color temperature (CCT) of Mg2InSbO6:Sm3+ phosphors are obtained. Furthermore, a white light-emitting diode (w-LED) is successfully fabricated, possessing CCT of 6769 K and high color rendering index (Ra) of 89. Therefore, the orange-red-emitting Mg2InSbO6:Sm3+ phosphors exhibit great potential to apply in solid-state lighting fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号