首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ventilation efficiency (VE) indices for indoor environments are widely used to evaluate the ventilation performance and air quality of indoor domains. These indices are considered effective for outdoor air quality assessments too. In this paper, application of the ventilation efficiency indices for indoor environments to urban domains is presented and their effectiveness is confirmed. Three indices for indoor VE indices are considered here: the purging flow rate (PFR: the effective airflow rate required to purge pollutants from the domain), visitation frequency (VF: the number of times a pollutant enters the domain and passes through it) and residence time (TP: the time a pollutant takes from once entering or being generated in the domain until its leaving), which can be calculated by means of computational fluid dynamics (CFD) simulations. Two examples for evaluating the air quality of urban domains in terms of the VE indices were presented. In the first, CFD simulations were carried out using a two-building model to assess the effects of urban street width and street building heights on the VE indices of a domain located within a street. In the second example, numerical simulations were carried out to estimate the influence of the arrangement of building arrays on the VE indices of selected domains located within these arrays. The results of the study showed that the ventilation efficiency indices of indoor environments appear to be a promising tool in the assessment of the air quality of urban domains as well. One of the features of applying these indices is that it is not necessary to consider the location of the pollutant source within the study domain. In addition, the VE indices are able to describe the pollutant behavior within the domain, which is very important for obtaining a complete assessment for the wind ventilation performance within urban domains.  相似文献   

2.
Waring MS  Siegel JA 《Indoor air》2008,18(3):209-224
The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. PRACTICAL IMPLICATIONS: The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.  相似文献   

3.
To analyze the thermal performance and indoor air quality (IAQ) in building simultaneously and quickly, we have developed an integrated modeling tool to simulate the dynamic indoor multi-parameters distributions and concentrations. The tool can take the parameters including indoor temperature, indoor humidity, and pollutant concentrations (e.g., volatile organic compounds (VOC) CO2, particulate matter (PM)), as well as the heating/cooling load of heating, ventilating, and air-conditioning (HVAC) system into account. It couples a new zonal approach based on room air age. This paper presents the basic concept and flow chart in developing the modeling tool, and demonstrates the tool's application in a hypothetical health care building. The tool could be used for design of HVAC system with IAQ control devices and for the simultaneous analysis of thermal performance and IAQ in buildings.  相似文献   

4.
The development of standardized non-culture-based approaches capable of assessing microbial contarnination of airborne dust is sorely needed. Direct chemical analysis has previously been successfully used for measuring components unique to Gram-negative bacteria. In the present study, dust from primary filters of hospital air-conditioning intake systems (which filter incoming outdoor and recirculated air) and dust from secondary room filters (filtering primarily indoor air) were analyzed. Dust from home air-condition-ing filters (which also filter outdoor air, with recirculation) were also analyzed. Muramic acid is an aminosugar present in Gram-positive and Gram-negative bacterial cell walls and can serve as a measure of bacterial contamination in dust. Samples were analyzed by gas chromatography-mass spectrometry after hydrolysis and conversion of released sugars (including muramic acid) to alditol acetates. Primary hospital filters contained 26.3 ± 10.0 ng of muramic acid/mg dust while secondary filters contained 5.3 ± 5.4 ng/mg. The level of inuramic acid in home air-conditioner dust was 31.7 ± 13.4 ng/mg. This study of dust collected from air-conditioners demonstrates the feasibility of chemical assessment of the microbial contamination of indoor air.  相似文献   

5.
Abstract Sources of indoor air pollutants in residential and office environments can be managed to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, pretreatment, and altering the amount, location, or time of use. Intelligent source management requires knowledge of the source's emission characteristics, including chemical composition, emission rates, and decay rates. In addition, knowledge of mechanical and natural outdoor air exchange rates, heating/air-conditioning duct flow rates, and local exhaust fan (e.g., kitchen, bathroom) flow rates is needed to determine pollutant concentrations. Finally, indoor air quality (IAQ) models use this information and occupant activity patterns to determine instantaneous and/or cumulative individual exposure. This paper describes a number of residential and office scenarios for various indoor air pollution sources, several ventilation conditions, and typical occupant activity patterns. IAQ model predictions of occupant exposures for these scenarios are given for selected source management options. A one-month period was used to compare exposures; thus, long-term exposure information is not presented in this paper.  相似文献   

6.
In airtight houses, it is important to control the ventilation airflow of each room in order to ensure good indoor air quality. Therefore, the mechanical ventilation equipment should be designed carefully, giving due consideration to the ventilation efficiency in rooms. This paper describes the ventilation efficiency of a three-zone scale model with the experiment. The step-down method is applied to clarify the age of air and other indexes of ventilation efficiency. The effects of ventilation airflow volume with no recirculation and of the recirculated airflow volume on ventilation efficiency are investigated.  相似文献   

7.
Ward M  Siegel JA  Corsi RL 《Indoor air》2005,15(2):127-134
Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. PRACTICAL IMPLICATIONS: The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air-conditioning (HVAC) filter, HVAC operation, building air exchange rate, particle size, and duration of elevated outdoor particle concentration. Maximum particle reductions, relative to no stand-alone air cleaners, of 90% are predicted when three stand-alone air cleaners are employed.  相似文献   

8.
根据成都市夏季室外颗粒物浓度的实测结果,利用数值流体力学方法对混合通风空调房间的粒子进行了模拟,分析了室内粒子的空间演化及其与室外粒子的浓度关系。结果表明,室内粒子浓度对室外粒子浓度具有直接的依赖性,其中进风携带的小粒子浓度在室内下降较为明显。因此,在研究室内空气品质的同时,应考虑室外背景粒子浓度变化的影响。  相似文献   

9.
Concern for the exposure of children attending schools located near busy roadways to toxic, traffic‐related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air‐conditioning (HVAC) filtration systems for near‐road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31–66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74–97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49–96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention.  相似文献   

10.
《Building and Environment》2004,39(11):1289-1299
Building-related health complaints and symptoms represent a significant occupational health problem. Elevated concentrations of various types of indoor pollutants, frequently associated with inadequate ventilation, have been implicated as a potential cause. The objective of this research is to model and evaluate the performance of several ventilation methods in pollutant removal from indoor environments. Pollutant sources are assumed to be at the floor level, one with a constant emission rate and the other a fast decaying source (volatile organic compound emissions from a wood stain). Three ventilation methods, namely displacement ventilation and two mixing systems using a side grille and ceiling square diffuser respectively are studied. A computer model has been applied to simulate the distributions and the time history of the pollutant concentrations in a mockup office. Experimental data of velocity, temperature, and tracer gas concentration distributions in the chamber with the displacement diffuser are obtained to validate the airflow model. Simulation results show that different ventilation methods affect the pollutant distributions within the room. When the pollutant sources are distributed on the floor and not associated with a heat source or initial momentum, displacement ventilation behaves no worse than perfect mixing ventilation at the breathing zone. Conventional “mixing” diffusers, on the other hand, could perform better or worse than a perfect mixing system. The computer model could be used for selecting appropriate ventilation systems to maximize indoor air quality for occupants.  相似文献   

11.
This paper describes a coupled dynamic simulation of an indoor environment with heating, ventilation, and air conditioning (HVAC) systems, controls and building envelope heat transfer. The coupled simulation can be used for the design and control of ventilation systems with stratified air distributions. Those systems are commonly used to reduce building energy consumption while improving the indoor environment quality. The indoor environment was simulated using the fast fluid dynamics (FFD) simulation programme. The building fabric heat transfer, HVAC and control system were modelled using the Modelica Buildings library. After presenting the concept, the mathematical algorithm and the implementation of the coupled simulation were introduced. The coupled FFD–Modelica simulation was then evaluated using three examples of room ventilation with complex flow distributions with and without feedback control. Further research and development needs were also discussed.  相似文献   

12.
人类大部分时间是在室内度过的,室内空气环境质量直接影响着人类的身心健康和劳动效率,合理地运用暖通空调措施是实现良好的室内环境品质的重要手段。文章介绍了影响室内空气环境的因素,并从空调系统应用、通风的有效性与室内环境品质的关系以及空调系统的噪声控制等方面阐述了暖通空调技术与室内环境结合的具体技术措施。  相似文献   

13.
《Energy and Buildings》2004,36(12):1273-1280
This paper investigates a hybrid cooling system, utilizing wind-driven cross ventilation and radiational panel cooling in an office setting. The characteristics of the indoor environment are examined using computational fluid dynamics (CFD) simulation, which is coupled with a radiation heat transfer simulation, and HVAC control in which the PMV value for a human model in the center of the room is controlled to attain the target value. The system is devised with an energy-saving strategy, which utilizes stratified room air with a vertical temperature gradient. The cooled air settles down within the lower part of the room, while the hot and humid air passes through the upper region of the room, sweeping out the heat and contaminants generated indoors. This strategy is found to be quite energy-efficient in the intermediate seasons of spring and autumn in Japan. Even under hot and humid outdoor conditions, the hybrid system coupled with radiational cooling would bring significant energy savings are possible compared with a hybrid system coupled with underfloor air-conditioning.  相似文献   

14.
随着城市交通的快速发展,交通污染逐渐成为影响城市空气质量的主要因素。街谷内的交通污染还会因为室内通风对室内空气质量产生影响。本文介绍了城市街谷内交通空气污染的主要特点和扩散模式,总结了室外交通污染对室内空气质量的影响特点和影响因素,并对现有的实地测量法、理论模式预测法和数值模拟法进行了分析和比较,最终对数值模拟法可能遇到的问题和解决方法进行了分析和讨论。  相似文献   

15.
Lam KS  Chan FS  Fung WY  Lui BS  Lau LW 《Indoor air》2006,16(2):86-97
A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. PRACTICAL IMPLICATIONS: This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.  相似文献   

16.
潘继钢  吴小勇 《山西建筑》2011,37(10):115-116
基于商用CFD软件,在FLUENT中将材料定义为水汽混合物的湿空气,通过对同一典型空调房间,采取同一送风工况,不同的送回风方式,运用k—ε模型进行数值模拟,得到两种送回风方式的速度分布、温度分布、压力分布,从而为该典型空调房间选择了最优的送回风方式。  相似文献   

17.
Building heating, ventilation and air-conditioning (HVAC) system can be potential contaminant emission source. Released contaminants from the mechanical system are transported through the HVAC system and thus impact indoor air quality (IAQ). Effective control and improvement measures require accurate identification and prompt removal of contaminant sources from the HVAC system so as to eliminate the unfavourable influence on the IAQ. This paper studies the application of the adjoint probability method for identifying a dynamic (decaying) contaminant source in building HVAC system. A limited number of contaminant sensors are used to detect contaminant concentration variations at certain locations of the HVAC ductwork. Using the sensor inputs, the research is able to trace back and find the source location. A multi-zone airflow model, CONTAM, is employed to obtain a steady state airflow field for the studied building with detailed duct network, upon which the adjoint probability based inverse tracking method is applied. The study reveals that the adjoint probability method can effectively identify the decaying contaminant source location in building HVAC system with few properly located contaminant concentration sensors.  相似文献   

18.
不同气流组织形式下空气龄的实验研究   总被引:1,自引:0,他引:1  
空气龄是评价室内空气品质的指标之一,本文利用CO2示踪气体得出了常用的6种气流组织形式下标准气室中各测点处的浓度衰减曲线,并计算出各测点的空气龄。实验可重复性较好,测得的空气龄反映了标准气室各点空气的新鲜程度,描述了不同气流组织形式通风效率的高低,揭示了室内空气的流动形态,也给空调房间气流组织形式的合理选择提供了依据。  相似文献   

19.
《Building and Environment》2002,37(3):241-255
The primary functions of mechanical ventilation systems include the delivery of outdoor air to the occupants, the removal of indoor contaminants and the maintenance of thermal comfort conditions in the occupied zones. Air exchange effectiveness can be employed to characterise the ventilation air mixing within a room. This paper presents our findings pertaining to air exchange effectiveness values in a seven-storey office building. Tracer gas analysis, based on concentration decay method, is employed to determine these values. The results indicate air flow patterns in the occupied zones which approximate “perfect mixing”. The measured concentration levels of indoor air pollutants are also found to be within reasonable limits.  相似文献   

20.
Conservation measures that seal a building, such as storm window installation, can significantly reduce its energy requirements. These measures also protect its occupants from air pollutants having outdoor sources but amplify any harmful effects of those generated indoors. Which effect is greater?Since it is inadequate to consider pollution levels constant, we assume that they follow daily cycles and can thus be well represented by Fourier series. We conclude that the indoor concentration of any pollutant generated solely outdoors also follows a daily cycle but its maximum lags behind and is lower than the outdoor maximum to an extent depending in an inverse manner on v, the air exchange (ventilation + infiltration) rate. A simple measure of the daily variation of pollutant concentrations and indoor production rates can be derived from their Fourier series and used to test whether these quantities can be assumed constant.Although average daily indoor and outdoor pollutant concentrations of any pollutant are the same if there are no indoor sinks, lowering v will still protect a building's occupant if: (1) the outdoor peak or variation above its average is much greater than its average, and (2) the peak is short-lived.Lowering v probably raises indoor average and peak pollutant concentrations from all indoor sources by at least as much as it lowers only peaks from just one outdoor source, rush hour traffic, thus increasing indoor pollutant levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号