首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Silicon oxycarbides modified with main group or transition metals (SiMOC) are usually synthesized via pyrolysis of sol‐gel precursors from suitable metal‐modified orthosilicates or polysiloxanes. In this study, the phase composition of different SiMOC systems (M = Sn, Fe, Mn, V, and Lu) was investigated. Depending on the metal, different ceramic phases formed. For M = Mn and Lu, MOx/SiOC ceramic nanocomposites were formed, whereas other compositions revealed the formation of M/SiOC (M = Sn), MSix/SiOC (M = Fe) or MCx/SiOC (M = V) upon pyrolysis. The different phase compositions of the SiMOC materials are rationalized by a simple thermodynamic approach which generally correctly predicts which type of ceramic nanocomposite is expected upon ceramization of the metal‐modified precursors. Calculations show that the thermodynamic stability of the MOx phase with respect to that of the C–O system is the most important factor to predict phase formation in polymer‐derived SiMOC ceramic systems. A secondary factor is the relative stability of metal oxides, silicates, carbides, and silicides.  相似文献   

2.
In this study, novel ferromagnetic Ni-containing silicon oxycarbide (SiOC–Ni) was successfully fabricated from a base polysiloxane (PSO) with the addition of nickel 2,4-pentanedionate. The resultant SiOC–Ni nanocomposite consists of in situ formed Ni nanocrystallites with a small amount of NiO uniformly dispersed in the amorphous SiOC matrix, and the corresponding nanocrystallite size increases with the increase of the pyrolysis temperature. The formation of nickel silicides (NixSiy) is completely suppressed by the effect of water vapor during the pyrolysis. The fundamental phase evolution process and mechanisms are explained. In an argon atmosphere, the SiOC–Ni materials pyrolyzed at 900°C are stable up to 1000°C with less than 6 wt% weight loss; they exhibit desirable electrical conductivity up to ~900°C with the highest electrical conductivity at ~247 S/m. This series of SiOC–Ni materials also demonstrates exciting ferromagnetic behaviors. Their new semiconducting behavior with soft ferromagnetism presents promising application potentials for magnetic sensors, transformers, actuators, etc.  相似文献   

3.
Micro‐/mesoporous SiOC bulk ceramics with high surface area and bimodal pore size distribution were prepared by pyrolysis of polysiloxane in argon atmosphere at 1100°C–1400°C followed by etching in hydrofluoric acid solution. Their thermal behaviors, phase compositions, and microstructures at different nano‐SiO2 filler contents and pyrolysis temperatures were investigated by XRD, SEM, DSC, and BET. The SiO2 fillers and SiO2‐rich clusters in the SiOC matrix act as pore‐forming sites and can be etched away by HF. At the same time, the SiO2 filler promotes SiOC phase separation during the pyrolysis. The filler content and pyrolysis temperature have important effects on phase compositions and microstructures of porous SiOC ceramics. The resulting porous SiOC bulk ceramic has a maximum specific surface area of 822.7 m2/g and an average pore size of 2.61 nm, and consists of free carbon, silicon carbide, and silicon oxycarbide phases.  相似文献   

4.
Silicon oxycarbide (SiOC) ceramic has attracted great attention as fascinating candidate of high-temperature material, however, its thermal stability is significantly limited by the phase separation at high temperature. Here, a TiC/SiOC ceramic was prepared by pyrolysis of a tetrabutyl titanate modified carbon-rich polysiloxane (TBT/PSO) precursor. The TiC phase is in-situ formed by the carbothermal reaction of TBT-derived amorphous TiO2 phase with excess free-carbon phase during pyrolysis, and its size and amount increase with the pyrolysis temperature. The SiC phase appears at a higher temperature than the TiC phase and is hindered by the increased Ti content in the TBT/PSO precursor. Thus, the TiC/SiOC ceramic exhibits better thermal stability and crystallization resistance than the TiC-free SiOC ceramic under the thermal treatment (1500 °C) in argon atmosphere. The in-situ formation of metal carbide into the carbon-rich SiOC ceramic would further expand its application at high temperature environments.  相似文献   

5.
Micro/mesoporous SiOC bulk ceramics with the highest surface area and the narrowest pore size distribution were prepared by water‐assisted pyrolysis of polysiloxane in argon atmosphere at controlled temperatures (1100°C–1400°C) followed by etching in hydrofluoric acid (HF) solution. Their pyrolysis behaviors, phase compositions, and microstructures were investigated by DSC, FTIR, XRD, and BET. The Si–O–Si bonds, SiO2‐rich clusters, and SiO2 nanocrystals in the pyrolyzed products act as pore‐forming species and could be etched away by HF. Water injection time and pyrolysis temperature have important effects on phase compositions and microstructures of the porous SiOC bulk ceramics, which have a maximum‐specific surface area of 2391.60 m2/g and an average pore size of 2.87 nm. The porous SiOC ceramics consist of free carbon phase, silicon carbide, and silicon oxycarbide.  相似文献   

6.
In this contribution, we design a novel strategy to synthesize SiOC ceramics by pyrolysis of hyperbranched ferrocene-containing polysiloxane (HBPSO-VF) which are synthesized by the reaction of polysiloxane (PSO) with 1,1′-Bis(dimethylvinylsilyl)ferrocene (VF). This SiOC ceramics show much lower crystallization temperature because of the capability of HBPSO-VF to incorporate metallic iron into the backbone of PSO. The usage of HBPSO-VF offers enhanced ceramic yield of 83 wt% at 1200 °C due to the deep cross-linking of hydrosilylation. Nano-sized SiC and turbostratic carbons are separated from amorphous SiOC phase when it is annealed at 1100 °C, while crystallization temperature is 1400 °C when PSO is used as polymer precursors. The minimum reflection coefficient (RCmin) of this nanocrystal-containing ceramic reaches −46 dB, exhibiting a promising prospect as a kind of electromagnetic wave (EMW) absorbing materials. This method also can be further extended to develop other functional Si-based polymer derived ceramic (PDC) systems for EMW absorption and shielding applications.  相似文献   

7.
《Ceramics International》2017,43(7):5774-5780
Crack-free silicon oxycarbide (SiOC) aerogel monolith was fabricated by pyrolysis of precursor aerogel prepared from triethoxyvinylsilane/tetraethoxysilane (VTES/TEOS) using sol-gel process and ambient drying. Effects of different precursors, the amount of base catalyst (NH4OH) and the heating rate during pyrolysis on the properties such as monolithicity, bulk density, surface area and pore size distribution of aerogels were investigated. The results show that the crack-free SiOC aerogel can be easily obtained from VTES/TEOS as compared to that of methyltriethoxysilanes/tetraethoxysilane (MTES/TEOS) and phenyltriethoxysilanes/tetraethoxysilane (PhTES/TEOS) precursors. The influence of heating rate during pyrolysis process on shrinkage rate, ceramic yield and surface area of the SiOC aerogels could be ignored, while the variation in the amount of NH4OH exerted a strong impact on the properties of SiOC aerogels. Increasing the amount of NH4OH resulted in the decrease of bulk density and surface area of SiOC aerogels from 0.335 g/cm3 and 488 m2/g to 0.265 g/cm3 and 365 m2/g. The resultant SiOC aerogels exhibit high compressive strength (1.45–3.17 MPa). 29Si MAS NMR spectra revealed the retention of Si-C bond in the SiOC aerogels after pyrolysis at 1000 °C. The present work demonstrates VTES/TEOS is a promising co-precursors to easily and low cost synthesize large size SiOC aerogel monolith.  相似文献   

8.
Porous silicon oxycarbide (SiOC) is emerging as a much superior ultrahigh surface area material that can be stable up to high temperatures with great tailorability through composition and additive modifications. In this study, bulk SiOCs were fabricated from a base polysiloxane (PSO) system by using different organic additives and pyrolysis atmospheres followed by hydrofluoric acid (HF) etching. The additives modify the microstructural evolution by influencing the SiO2 nanodomain formation. The SiOC ceramics contain significantly less SiC and more SiO2 with Ar + H2O atmosphere pyrolysis compared to Ar atmosphere pyrolysis. Water vapor injection during pyrolysis also causes a drastic increase in specific surface areas. The addition of 10 wt% tetraethyl orthosilicate (TEOS) with Ar + H2O pyrolysis produces a specific surface area of 1953.94 m2/g, compared to 880.09 m2/g for the base PSO pyrolyzed in Ar. The fundamental processes for the composition and phase evolutions are discussed as a novel pathway to creating ultrahigh surface area materials. The ability to drastically increase the specific surface area through the use of pyrolysis atmosphere and organic additives presents a promising processing route for highly porous SiOC ceramics.  相似文献   

9.
In this study, bulk silicon oxycarbides (SiOCs) were fabricated from base polysiloxane (PSO) systems with different carbon content by using Ar or Ar + H2O pyrolysis atmosphere. Compared to the Ar pyrolysis condition, the SiOC samples pyrolyzed with water vapor plus Ar generally show lower ceramic yield except for the Tospearl (polymethylsilsesquioxane) sample at 1400 °C. The SiOC ceramics contain significantly less SiC and carbon after pyrolysis under Ar + H2O atmosphere compared to pure Ar atmosphere. The carbon-poor Tospearl sample shows a crystalline SiO2 structure (cristobalite) after pyrolysis at 1400 °C in Ar + H2O, which is also confirmed using TEM diffraction pattern analysis. TEM microstructures indicate little change in microstructures for the carbon-rich samples. The fundamentals, such as total Gibbs free energy, the driving force for crystallization, and phase contents at different pyrolysis temperatures can be calculated based on a Gibbs free energy minimization method. The phase content calculations predict considerable decrease in the amounts of SiC and C and significant increase in the percent of SiO2 after pyrolysis in Ar + H2O compared to Ar. The thermodynamic calculation results match with our experimental observations. This work provides a guided method to synthesize high temperature SiOCs with desired phases.  相似文献   

10.
《Ceramics International》2023,49(3):4082-4090
Hollow silicon oxycarbide (SiOC) ceramic microspheres were synthesized through solvothermal process of vinyltriethoxysilane in NaOH solution with subsequent pyrolysis at high temperature. Increasing the synthesis temperature not only reduces the Si–C bond and C content in SiOC ceramics, but also transforms the amorphous SiOC ceramics into cristobalite SiO2 after carbonization. The rearrangement reaction of oxygen-enriched structural units results in the increase of SiO2C2 unit. No phase separation occurs at 1400 °C, and SiC nanocrystals are mainly come from the carbothermal reduction reaction of SiO2 with free C. The size change of SiO2 nanograins were further investigated by HF etching. The porous carbon is obtained after removal of SiO2, while HF etching has no effect on the structure of free C. The C content affects the structure evolution of SiOC ceramics significantly. Although the size of SiO2 grows as increase of pyrolysis temperature, the high C content inhibits the crystallization and growth of SiO2 during the pyrolysis process.  相似文献   

11.
Ultra-high temperature ceramic nanocomposites (UHTC-NC) within the Si(HfxTa1?x)(C)N system were synthesized via the polymer-derived ceramics (PDC) synthesis route. The microstructure evolution of the materials was investigated upon pyrolysis and subsequent heat treatment. The crystallization behavior and phase composition were studied utilizing X-ray diffraction, scanning- and transmission electron microscopy. Single-source-precursors were converted into amorphous single-phase ceramics, with the exception of surface crystallization effects, at 1000 °C in NH3. Annealing in N2 at 1600 °C resulted in fully crystalline UHTCs. The powder samples revealed microstructures consisting of two characteristic regions, bulk and surface; displaying intrinsic microstructure and phase composition differences. Instead of the expected nitrides, transition metal carbides (TMC) were detected upon high-temperature anneal. The residual carbon available in the system triggered a decomposition reaction, resulting in the formation of TMCs plus gaseous nitrogen and SiC. Experimental data underline that N-containing PDCs are prone to phase separation accompanied by thermal decomposition and diffusion-controlled coarsening.  相似文献   

12.
Here we report on bulk Si–Al–O–C ceramics produced by pyrolysis of commercial poly(methylsilsesquioxane) precursors. Prior to the pyrolysis the precursors were cross-linked with a catalyst, or modified by the sol-gel-technique with an Al-containing alkoxide compound, namely alumatrane. This particular procedure yields amorphous ceramics with various compositions (Si1.00O1.60C0.80, Si1.00Al0.04O1.70C0.48, Si1.00Al0.07O1.80C0.49, and Si1.00Al0.11O1.90C0.49) after thermal decomposition at 1100 °C in Ar depending on the amount of Al-alkoxide used in the polymer reaction synthesis. The as-produced ceramics are amorphous and remain so up to 1300 °C. Phase separation accompanied by densification (1300–1500 °C) and formation of mullite at T > 1600 °C are the stages during heat-treatment. Bulk SiAlOC ceramics are characterized in terms of microstructure and crystallization in the temperature regime ranging from 1100 to 1700 °C. Aluminum-free SiOC forms SiC along with cracking of the bulk compacts. In contrast, the presence of Al in the SiOC matrix forms SiC and mullite and prevents micro cracking at elevated temperatures due to transient viscous sintering. The nano-crystals formed are embedded in an amorphous Si(Al)OC matrix in both cases. Potential application of polysiloxane derived SiOC ceramic in the field of ceramic micro electro mechanical systems (MEMS) is reported.  相似文献   

13.
Amorphous silicon oxycarbides are known to be an effective anode material for lithium-ion batteries. Despite their exceptional properties and high charge capacities, however, their practical uses are limited by their significant first-cycle loss, considerable hysteresis, and low cyclic ability. Comparatively, SiOC/metal oxide materials have demonstrated increased rate capability and cyclic stability. This study utilized a liquid precursor-derived ceramic method to modify SiOC with titanium (IV) butoxide precursor to synthesize SiOC/TiOxCy. X-ray diffractograms confirmed the amorphous nature of SiOC/TiOxCy. The elemental composition and bonding properties were investigated using X-ray photoelectron spectroscopy, and electron microscopy was used to explore morphological features. In the first cycle, the reversible capacity of pyrolyzed SiOC/TiOxCy was 520 mAh g−1, which then increased to 736 mAh g−1 for the 1200°C annealed SiOC/TiOxCy due to the increased free carbon network and TiC conductive phases. The irreversible capacity of the first cycle was 568 mAh g−1, which was lower than the annealed SiOC irreversible capacity of 695 mAh g−1. Interestingly, the rate stability of the pyrolyzed SiOC/TiOxCy performed more stability than the annealed sample. Localized carbothermal reactions between amorphous SiOC/TiOxCy and free carbon at annealing temperatures resulted in loss of structure stability.  相似文献   

14.
Polymer-derived SiOC-C composites are typically obtained through pyrolysis of a polysiloxane precursor in inert atmosphere. Recent studies have shown that novel SiOC microstructures and compositions can be obtained when the pyrolysis is carried out in a reactive environment, as CO2, which leads to a selective oxidation of the Si─C bonds leaving a microstructure constituted by a nano-dispersed sp2 carbon phase within an SiO2 matrix. However, little is known about the reaction mechanisms between CO2 and the preceramic polymer to date. In this work, we investigated the pyrolysis of a methyl-silsesquioxane in reactive (CO2) and inert (Ar or He) atmosphere by combining TG/MS and FT-IR analysis. The results showed that CO2 starts to react with the preceramic polymer from ≈750°C when the Si─CH3 groups start to form Si─CHx-Si units. The reaction breaks the Si─C bond increasing the amount of the free carbon phase and releasing water vapor, detected by MS, even at temperatures exceeding 900°C. At higher temperatures (≈950°C), CO2 reacts with the free carbon phase leading to a weight loss and the formation of CO.  相似文献   

15.
Polymer derived SiOC and SiCN ceramics (PDCs) are interesting candidates for additive manufacturing techniques to develop micro sized ceramics with the highest precision. PDCs are obtained by the pyrolysis of crosslinked polymer precursors at elevated temperatures. Within this work, we are investigating PDC SiOC ceramic monoliths synthesized from liquid polysiloxane precursor crosslinked with divinylbenzene for fabrication of conductive electromechanical devices. Microstructure of the final ceramics was found to be greatly influenced by the pyrolysis temperature. Crystallization in SiOC ceramics starts above 1200?°C due to the onset of carbothermal reduction leading to the formation of SiC and SiO2 rich phases. Microstructural characterisation using ex-situ X-ray diffraction, FTIR, Raman spectra and microscopy imaging confirms the formation of nano crystalline SiC ceramics at 1400?°C. The electrical and mechanical properties of the ceramics are found to be significantly influenced by the phase separation with samples becoming more electrically conducting but with reduced strength at 1400?°C. A maximum electrical conductivity of 101 S?cm?1 is observed for the 1400?°C samples due to enhancement in the ordering of the free carbon network. Mechanical testing using the ball on 3 balls (B3B) method revealed a characteristic flexural strength of 922?MPa for 1000?°C amorphous samples and at a higher pyrolysis temperature, materials become weaker with reduced strength.  相似文献   

16.
This study focuses on the pyrolysis and ion irradiation behaviors of polymer-derived SiFeOC–C–SiC ceramic. The pyrolyzed material is composed of SiO2 and SiOC (amorphous), carbon (amorphous and turbostratic), and Fe3Si and β-SiC (nanocrystalline). Irradiation was carried out at both room temperature and 600°C using 400 keV Kr ions with fluences of 4 × 1015 and 1 × 1016 ions cm−2, respectively. The Fe3Si and SiC nanocrystals are stable against irradiation up to 3 displacement per atom (dpa) at room temperature and up to 12 dpa at 600°C. The SiOC tetrahedrals show phase separation and minor carbothermal reduction. The high irradiation resistance and the dense, defect-free amorphous microstructure of SiFeOC–C–SiC after prolonged irradiation demonstrate its great potential for advanced nuclear reactor applications.  相似文献   

17.
Ti3SiC2 phase was synthesized by reactive pyrolysis of three different polycarbosilane, [Si(H)2CH2]m·[(H)Si(Vi)CH2]n·[(H)Si(Me)CH2]p (AHPCS), [Si(CH3)2CH2]x·[Si(H)(CH3)CH2]y (PCS), and [Me(H)SiC≡C]n, filled with metal Ti powder. The pyrolysis was carried out in argon atmosphere between 1200°C and 1400°C. The metal–precursor reactions and phase evolution during the pyrolysis were studied by means of X-ray diffraction and scanning electron microscopy. The results indicated that PCS/Ti system was more beneficial for the synthesis of Ti3SiC2. In addition, the high-purity Ti3SiC2 could be synthesized through the pyrolysis of green compact of the PCS/Ti system with CaF2 at 1400°C.  相似文献   

18.
《Ceramics International》2016,42(10):11805-11809
Silicon oxycarbide (SiOC) aerogels have been synthesized from preceramic polymers via pyrolysis in inert atmosphere at 1200 and 1300 °C. The as synthesized materials have a typical colloidal microstructure with mesoporosity in the range 10–50 nm and no microporosity. HF acid attack of the SiOC aerogels dissolves preferentially the SiO2-rich phase and creates micro-and (small)mesopores (<10 nm) in the aerogels microstructure finally leading to a materials with hierarchical porosity. The HF post-pyrolysis treatment is more efficient for the SiOC aerogels pyrolyzed at the maximum temperature, i.e. 1300 °C, leading to a maximum value of specific surface area of 530 m2/g and total porosity of 0.649 cc/g.  相似文献   

19.
SiOC is one of the most promising anodes for lithium-ion batteries, which shows the good structural stability and high capacity comparing to commercial graphite anode. In this paper, different SiOC anodes (SiOC-217, SiOC-H44, and SiOC-MK) were prepared from polymer precursors with different side groups (phenyl, methyl-phenyl, methyl) to investigate the effects of free carbon on the electrochemical performance of SiOC anodes. The results of X-ray photoelectron spectroscopy presented that SiOC was composed by different SiOxC4−x units and free carbon phase. The initial discharge capacity of SiOC-217 was 742.67 mA h g−1. After 100 cycles, the reversible capacity of SiOC-217 reached 450.65 mA h g−1 at 0.2 C, indicating a capacity retention rate of 60.68%. After cycling at high current densities, SiOC-217 exhibited a high discharge capacity of 592.88 mA h g−1 at 0.1 C. SiOC-217 exhibited excellent electrochemical performance due to the high content of free carbon phase. Furthermore, the high contents of SiO2C2 and SiO3C units further enhanced the improvement of electrochemical performance.  相似文献   

20.
In this study, C/SiOC and C/SiO2 composites were prepared by using carbonaceous microspheres with different surface functional groups. Carbonaceous microspheres based on hydrothermal reaction of glucose contains hydroxyl group, while the surface carboxyl group increases after NaOH etching. The hydroxyl group increases the oxygen-enriched structural units of SiOC ceramics, and the C spheres are closely enwrapped in SiOC matrix after pyrolysis at 900 °C. However, the interfacial reaction of surface carboxyl with Si–OH results in the formation of cristobalite SiO2, and C spheres are not only encased inside the SiOC matrix, but also dispersed outside of SiOC ceramics. After removal of C via calcination at 500 °C for 5 h, C/SiOC and C/SiO2 composites are transformed into amorphous SiO2 and cristobalite SiO2, respectively. The thermogravimetric analysis indicates the oxidation resistance of SiOC is superior to that of C and SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号