首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Broadband near-infrared phosphors are essential to realize nondestructive analysis in food industry and biomedical areas. Efficient long-wavelength (>830 nm) phosphors are strongly desired for practical applications. Herein, we demonstrate an efficient broadband NIR phosphor LiInGe2O6:Cr3+, which exhibits a broad NIR emission peaking at ~880 nm with a full width at half maximum of 172 nm upon 460 nm excitation. The internal/external quantum efficiencies of LiInGe2O6:Cr3+ are measured to be 81.2% and 39.8%, respectively. The absorption of the phosphor matches well with commercial blue LEDs. Using the fabricated phosphor converted LED illuminating human palm, distribution of blood vessels can be clearly recognized under a NIR camera. These results indicate that LiInGe2O6:Cr3+ is a promising candidate to be used in future non-destructive biological applications.  相似文献   

2.
Cr3+-doped phosphors have recently gained attention for their application in broadband near-infrared phosphor-converted light-emitting diodes (pc-LEDs), but generally exhibit low efficiency. In this work, K2Ga2Sn6O16:Cr3+ (KGSO:Cr) phosphor was designed and synthesized. The experimental results show that the Cr3+-doped phosphor exhibited broadband emissivity in the range 650-1300 nm, with a full width at half maximum (FWHM) of approximately 220-230 nm excited by a wavelength of 450 nm. With the co-doping of Gd3+ ions, the internal quantum efficiency (IQE) of the KGSO:Cr phosphor increased from 34% to 48%. The Gd3+ ions acted neither as activators nor sensitizers, but to justify the crystal field environment for efficient Cr3+ ions broad emission. The Huang-Rhys factor decreased as the co-doping of Gd3+ ions increased, demonstrating that the nonradiative transitions were suppressed. An efficient strategy for enhancing the luminescence properties of Cr3+ ions is proposed for the first time. The Gd3+–co-doped KGSO:Cr phosphor is a promising candidate for broadband NIR pc-LEDs.  相似文献   

3.
In this study, Sm3+-doped double-perovskite Mg2InSbO6 phosphors were synthesized via high-temperature solid-state reaction. Mg2InSbO6 belongs to the double-perovskite family with a space group of R (No.148). The photoluminescence (PL) spectrum illustrates that Mg2InSbO6:0.05Sm3+ phosphor can emit intense orange-red emission light at 607 nm due to the 4G5/26H7/2 transition. The optimum concentration of Mg2InSbO6:xSm3+ is confirmed to 0.05 mol. The asymmetric ratio (4G5/26H9/2/4G5/26H5/2) of Mg2InSbO6:0.05Sm3+ phosphor is 2.73. The quenching temperature exceeds 500 K, illustrating that Mg2InSbO6:Sm3+ sample has excellent heat resistance. The high color purity and correlated color temperature (CCT) of Mg2InSbO6:Sm3+ phosphors are obtained. Furthermore, a white light-emitting diode (w-LED) is successfully fabricated, possessing CCT of 6769 K and high color rendering index (Ra) of 89. Therefore, the orange-red-emitting Mg2InSbO6:Sm3+ phosphors exhibit great potential to apply in solid-state lighting fields.  相似文献   

4.
A novel tantalate red-emitting phosphors NaCa1-xEuxTiTaO6 (x = 0.02-0.50) is synthesized via the traditional solid-state reaction sintering. The photoluminescence properties, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermal stability are characterized in detail. Photoluminescence spectra show strong red emission monitored at 614 nm at λex = 395 nm. The spectral properties exhibit excellent color purity and chromaticity coordinate (CIE) characteristics. White light-emitting diodes (w-LEDs) device are fabricated by the prepared phosphors and show high quality of color-rendering index. The investigated results suggest that the Eu3+-doped NaCaTiTaO6 phosphors can be as potential substitute red phosphors for w-LEDs.  相似文献   

5.
We report a novel bright orange persistent luminescence (PersL) phosphor BaZnGeO4:Bi3+ with broad emission and PersL spectra. Its crystal structure, photoluminescence (PL) spectra, thermoluminescence (TL) spectra and PersL spectra were investigated in detail. The two emission bands at 440 nm and 595 nm originate from Bi3+ ions in normal Ba2+ sites (Bi1) and Ba2+ sites close to vacancy defects (Bi2), respectively. The introduction of and defects improves the emission intensity of Bi2 more than that of Bi1, demonstrating that Bi2 is related to the vacancy defects. The orange emission and PersL properties of BZGO:Bi3+ can be improved when a little and defects are introduced, because the introduction of and defects makes it easier for Bi3+ to enter in Ba2+ sites; and for PersL, and defects can perform as the effective trap centers to capture more charges, which is beneficial for PersL. BZGO:Bi3+ has quite good thermal stability, and the bright orange PersL can be observed by the naked eye for 1 h. Finally, a feasible PersL mechanism of BZGO:Bi3+ was proposed to clarify the PersL-generation process.  相似文献   

6.
It was unusual for Bi3+ ions to enhance the emission intensity of phosphors via nonsensitization. Here, La2MoO6:Eu3+, Bi3+ phosphors were successfully synthesized by a high temperature solid-state reaction method in air atmosphere. As the increase of doping concentration of Bi3+, the emission spectra of La2MoO6:Eu3+, Bi3+ phosphors had obvious shifts, splits and the enhancement of intensities, which indicated that the characteristics of the phosphors were modified. To analyze these phenomena, the crystal structure refinements, spectral characteristic analyze and Judd-Ofelt theoretical calculation were mainly performed. Bi3+ ions played the role of the nonsensitizer and affected the distortion of the crystal, the sites of Eu3+ ions, the field splitting energy and the internal quantum yield. Moreover the nephelauxetic effects of Bi3+ ions and the ET process caused synergistically the life times of La2MoO6:Eu3+, Bi3+ phosphors to increase and then gradually decrease. The CIE coordinates of phosphors changed within a small range. This study might be instrumental in promoting the further application of Bi3+ ions in rare earth luminescent materials.  相似文献   

7.
CaGd2(WO4)4:Eu3+ phosphors with controllable morphology were synthesized via the hydrothermal method. The influences of pH value, reaction time and Eu3+ concentration on the crystal structure, morphology, and photoluminescence properties of CaGd2(WO4)4:Eu3+ were studied. The pure tetragonal structure CaGd2(WO4)4 is obtained when the pH value is 8 and 9. Furthermore, by altering the pH value of the reaction solution, the morphologies of the CaGd2(WO4)4:Eu3+ phosphors evolve from spindle-shaped grains to tetragonal plate-like grains and finally to aggregated bulk particles. Under the 394 nm excitation, the phosphors display a bright red emission corresponding to the characteristic 4f-4f transitions of Eu3+, and the intensity of emission peaks depends mainly on the pH value, the reaction time, and the Eu3+ concentration. The optimum photoluminescence performance is achieved for CaGd2-x(WO4)4:xEu3+ (x = 1) phosphor synthesized at pH = 8 under the reaction time of 16 h. Finally, the thermal stability of the phosphors is analyzed at different ambient temperatures.  相似文献   

8.
乳状液膜法提取Cr3+内相界面反应的研究   总被引:1,自引:0,他引:1  
文章对乳状液膜法提取Cr3+内相界面的反萃取反应进行了研究。选择NaOH为反萃剂,H2O2为氧化剂,研究了内水相pH值、反应温度、搅拌速率、原料配比对反萃反应的影响,同时研究了反萃反应的反应方程式、反应的热力学性质。实验表明,反萃反应达平衡时的分配比随内相水溶液pH值及搅拌速度的升高而降低,随反应温度的升高而升高,随NaOH与[CrHn-mL(O)]2+摩尔比的增加先降低后升高;通过斜率法确定反萃反应为氧化-还原反应,并得到了反应的表观平衡常数k;计算了反萃反应的热焓ΔH,自由能ΔG和熵变ΔS。  相似文献   

9.
A double perovskite-type substrate of La2MgGeO6 (LMGO) was successfully synthesized via a high-temperature solid-state reaction method and was codoped with Mn4+ and Dy3+ to form a new deep-red phosphor (LMGO:Mn4+,Dy3+) for artificial plant growth light-emitting diodes (LEDs). This extraordinary phosphor can exhibit strong far-red emission with a maximum peak at 708 nm between 650 and 750 nm, which can be ascribed to the 2E→ 2A2 g spin-forbidden transition of Mn4+. The X-ray diffraction (XRD) patterns and high-resolution transmission electron microscopy (HRTEM) clarified that the La3+ sites in the host were partly replaced by Dy3+ ions. Moreover, we discovered energy transfers from Dy3+ to Mn4+ by directly observing the significant overlap of the excitation spectrum of Mn4+ and the emission spectrum of Dy3+ as well as the systematic relative decline and growth of the emission bands of Dy3+ and Mn4+, respectively. With the increase in the activator (Mn4+) concentration, the relationship between the luminescence decay time and the energy transfer efficiency of the sensitizer (Dy3+) was studied in detail. Finally, an LED device was fabricated using a 460 nm blue chip, and the as-obtained far-red emitting LMGO:Mn4+,Dy3+ phosphors for Wedelia chinensis cultivation. As expected, the as-fabricated plant growth LED-treated Wedelia chinensis cultured in the artificial climate box with overhead LEDs demonstrated that after 28 days of irradiation, the average plant growth rate and the total chlorophyll content were better than those of specimens cultured using the commercial R-B LED lamps, indicating that the as-prepared phosphor could have a potential application in the agricultural industry.  相似文献   

10.
Ce3+ ion doped BiPO4 phosphors were synthesized by co-precipitation method using ethylene glycol as capping agent. The prepared phosphors were characterized by XRD, SEM, FT-IR, UV-Vis, and PL spectroscopy techniques. The formation of monoclinic phase was confirmed from XRD and FT-IR studies. SEM study revealed the rice shape morphology of BiPO4:Ce3+ (7at.%). In the photoluminescence analysis, a broad emission band extending in a wide wavelengths range with maxima around 419 and 470 nm was observed under excitation at 370 and 417 nm, respectively. These emission bands are originated from the electronic transitions, viz., 5d → 2F5/2, 2F7/2 of Ce3+ ion. The emission intensity was accentuated with the increase of Ce3+ ion till 7at.% and subsequently attenuated with further increase of Ce3+ ion concentration; which is due to the concentration quenching effect. The BiPO4:Ce3+ (7at.%) sample was characterized for the feasibility of photocatalytic degradation of methylene blue under UV light irradiation and degradation of 90% of the dye was degraded within 120 minutes was observed. From the results, it is believed that the prepared BiPO4:Ce3+ may have potential applications in solid state lighting as well as in photocatalysis for the degradation of organic dyes.  相似文献   

11.
In this paper, we study the influence of Cr3+ on yellowish-green upconversion (UC) emission and the energy transfer (ET) of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 (SZNL) zinc silicate glasses under excitation of the 980 nm laser diode (LD). The influence of Cr3+ on enhancing the red UC emission of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses under the excitation of 980nm LD was also investigated. The ET processes between Yb3+, Cr3+, and Er3+, together with the combination of Yb3+-Cr3+-Er3+, which led to the green UC emission intensity of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses bands centered at ~546 nm have been significantly enhanced. By increasing the concentration of Cr3+ from 0 up to 5 mol.%, we can locate the Commission Internationale de l'éclairage (CIE) 1931 (x; y) chromaticity coordinates for UC emissions of Er3+/Cr3+/Yb3+ tri-doped in the central position of the yellowish-green color region of CIE 1931 chromaticity diagram. Besides, the ET processes between the Yb3+, Cr3+, and Er3+ are also proposed and discussed.  相似文献   

12.
研究了Mg、Sm和Zr助剂对AlF_3催化剂的乙炔气相氢氟化合成氟乙烯反应性能的影响。通过XRD、NH_3-TPD和拉曼光谱对催化剂进行了表征。结果表明,添加Zr既能保持C_2H_2的高转化率,提高氟乙烯选择性,同时能降低积炭选择性;加入Mg或Sm助剂,均使C_2H_2转化率下降,Mg大幅度降低积炭选择性,Sm提高了氟乙烯选择性。助剂的加入,改变了催化剂表面酸性位的数量和性能,是影响催化剂性能的主要因素。  相似文献   

13.
水热法制备Y2O3:Eu3+微米棒及其荧光性能表征   总被引:1,自引:0,他引:1  
利用水热法制备了Y2O3和Y2O3:Eu3+,探讨了反应温度、反应时间及氢氧化钠溶液浓度对产物晶型的影响,确定了生成较好晶型的反应条件为:反应温度180℃,反应时间24 h,氢氧化钠溶液浓度2 mol/L. 研究了Y3+和Eu3+的配比对Y2O3:Eu3+荧光性能的影响. 结果表明,当n(Y3+):n(Eu3+)的比例为100:5时,其荧光强度最佳. TEM分析表明,Y2O3:Eu3+粉末具有直径约0.2~0.6 mm、长度为几到十几微米的棒状结构.  相似文献   

14.
A novel pale-yellow Ba2ZnGe2O7:Bi3+ phosphor with site-selected excitation and small thermal quenching was synthesized by conventional solid-state sintering. The crystal structure and luminescence properties have been investigated in detail for the first time using XRD patterns, photoluminescence spectra, diffuse reflection spectra, decay curves, and temperature-dependent emission spectra. The results reveal that the excitation spectrum of Ba2ZnGe2O7:Bi3+ phosphor locates in the near-ultraviolet region of 300-400 nm, and its emission shows an obvious site-selective excitation phenomenon since Bi3+ ions occupy two different crystallographic sites in the Ba2ZnGe2O7 host. When excited under 360 nm, the phosphors show a pale-yellow emission in the range of 400-700 nm with the maximum peaking at 520 nm, while when excited under 316 nm, the phosphors show a blue emission in the range of 400-700 nm with the maximum peaking at 480 nm. In addition, the emission of Ba2ZnGe2O7:Bi3+ can also be easily controlled by changing the Bi3+ concentration. The Ba2ZnGe2O7:Bi3+ phosphor has small thermal quenching, and its emission intensity only decreases by 2% at 200°C. The results indicate that this novel pale-yellow Ba2ZnGe2O7:Bi3+ phosphor could be conducive to the development of white light-emitting diodes.  相似文献   

15.
Blue and far-red light play a key role in plant growth, so it is necessary to develop blue and far-red dual emitting phosphors. However, the match between phosphors and plant pigments is not satisfactory. In this work, we synthesized a series of blue and far-red dual emission Gd2MgTiO6: Bi3+, Cr3+ (GMTO: Bi3+, Cr3+) phosphors and discussed the luminescence performance. The blue emission at 430 nm is ascribed to 3P1 → 1S0 transition of Bi3+ and the far-red emission is ascribed to 4T2 → 4A2 and 2E → 4A2 transitions of Cr3+. Notably, because of the energy competition between Cr3+ ions and host materials, the luminescence tuning realized with the content of Cr3+ doping. In addition, an energy-transfer performance occurred from Bi3+ ions to Cr3+ ions and the photoluminescence intensity of Cr3+ can be enhanced by Bi3+. The pc-LEDs devices were synthesized by GMTO: Bi3+, Cr3+ phosphor, and ultraviolet (UV) chips. Finally, the emission of GMTO: Bi3+, Cr3+ phosphor matched well with the absorption spectra of plant pigments which indicated the potential applications in LED plant lamp.  相似文献   

16.
以水热法制备GdVO4:Sm3+上转换发光材料,表征了其形貌,考察了Sm3+掺杂量、焙烧温度及乙二胺四乙酸二钠(EDTA)掺杂量对材料上转换发光性能的影响. 结果表明,所制材料为四方晶系,在816 nm近红外光激发下,Sm3+掺杂量1.5%(mol)、焙烧温度800℃、EDTA:Sm3+(摩尔比)为1:1时,其上转换发光性能最好,发射峰位于565, 604, 647和706 nm处,分别归属于Sm3+的4G5/2→6HJ (量子数J=5/2, 7/2, 9/2, 11/2)电子跃迁,材料有可能用作LED灯荧光粉.  相似文献   

17.
The red emission with suitable peak wavelength and narrow band is acutely required for high color rendering index (CRI) white LEDs without at the cost of the luminous efficacy. Herein, the Li2Ca2Mg2Si2N6:Eu2+ red phosphor was prepared with facile solid-state method using Ca3N2, Mg3N2, Si3N4, Li3N, and Eu2O3 as the safety raw materials under atmospheric pressure for the first time, which shows red emission peaking at 638 nm with full width at half maximum (FWHM) of 62 nm under blue light irradiation and becomes the desired red phosphor to realize the balance between luminous efficacy and high CRI in white LEDs. The morphology, structure, luminescence properties, thermal quenching behavior, and chromaticity stability of the Li2Ca2Mg2Si2N6:Eu2+ phosphor are investigated in detail. Concentration quenching occurs when the Eu2+ content exceeds 1.0 mol%, whereas high-temperature photoluminescent measurements show a 32% drop from the room-temperature efficiency at 423 K. In view of the excellent luminescence performances of Li2Ca2Mg2Si2N6:Eu2+ phosphor, a white LEDs with CRI of 91 as a proof-of-concept experiment was fabricated by coating the title phosphor with Y3Al5O12:Ce3+ on a blue LED chip. In addition, the potential application of the title phosphor in plant growth LED device was also demonstrated. All the results indicate that Li2Ca2Mg2Si2N6:Eu2+ is a promising red-emitting phosphor for blue LED-based high CRI white LEDs and plant growth lighting sources.  相似文献   

18.
利用水热法合成了NaY(WO4)2:Dy3+上转换荧光粉. 通过XRD、SEM表征该荧光粉结构和形貌. 探讨了Dy3+浓度、pH值、反应温度及焙烧温度对NaY(WO4)2:Dy3+晶体结构、形貌及发光性能的影响,得到在Dy3+浓度为0.5%,pH=8,反应温度180℃,800℃焙烧条件下的样品具有最佳上转换发光性能. 利用776 nm近红外光激发NaY(WO4)2:Dy3+,观察到480 nm处的蓝光发射峰以及577 nm处的黄光发射峰. 其中蓝光来自Dy3+离子的4F9/2→6H15/2跃迁,黄光由Dy3+离子4F9/2→6H13/2跃迁产生.  相似文献   

19.
Yb3+/Er3+ ions codoped bulk glass ceramics (GC) with embedded monoclinic K3LuF6 nanocrystals are reported for potential temperature‐sensing application by using the fluorescence intensity ratio method. Such GC with good transparency and enhanced up‐conversion were prepared by the simple conversional melt‐quenching method and subsequent annealing process. Optical, structural, and temperature‐sensing up‐conversion properties were characterized systematically. Optical spectroscopy analysis confirms the incorporation of Yb3+/Er3+ into the K3LuF6 crystalline lattice, resulting in enhanced up‐conversion luminescence. Compared to other Er3+‐doped typical systems, Er3+ ions in K3LuF6 GC present large energy gap (870 cm?1) and high relative sensitivity (37.6 × 10?4 K?1 at 625 K), revealing that K3LuF6:Yb3+/Er3+ GC can be excellent candidates for optical thermometers.  相似文献   

20.
As a promising replacement for nitride red phosphors, Ce: Y3(Mg1.8Al1.4Si1.8)O12 (Ce: YMASG) ceramic phosphors have attracted significant attention recently for their advantages in inorganic encapsulation and massive red-shifting of Ce3+ emission. In this work, Ce: YMASG with different doping concentrations of Ce3+ and Al2O3, was fabricated by vacuum sintering to investigate its effects on the elimination of the impurity phase and the enhancement of the luminescent properties of white light-emitting diodes (w-LEDs). It was discovered that the emission wavelength redshifts from 592 to 606 nm as the Ce3+ concentration increases, while at 450 K, the emission intensity deteriorates from 0.47 to 0.36 of its initial value. The Rietveld analysis revealed the presence of an impurity phase of Y4MgSi3O13 with a concentration of 17.021 wt% in Ce: YMASG. With the introduction of Al2O3, the impurity phase was eliminated from the matrix completely, the emission peak shifted to a shorter wavelength, and the thermal stability was greatly improved. When the correlated color temperature was controlled at around 3000 K in the packaged w-LEDs, the commission international de l'éclairage (CIE) chromaticity coordinates shifted toward the bottom left corner of the diagram with increasing concentration of Ce3+. Conversely, the luminous efficiency (LE) increased from 36 lm/W to 58.6 lm/W as the concentration of Al2O3 increased from 0 to 10 wt%, which demonstrated the application prospect of the fabricated phosphor in warm w-LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号